Towards the Composition of sub-PeV Cosmic Rays at IceCube

Julian Saffer Aug 30th

Below the Knee

 overlap region of direct and indirect CR measurements inconsistent (dependence on hadronic model)

- IceCube has potential to lower its energy threshold for composition spectra to few hundred TeV
- everything I will show is Monte Carlo (proton & iron), unless stated explicitly otherwise

IceCube Neutrino Observatory

86 strings60 DOMs per string

1.5-2.5 km below surface

IceCube Neutrino Observatory

86 strings60 DOMs per string

1.5-2.5 km below surface

small zenith angle: shower can trigger IceTop + TeV muons penetrate in-ice

small zenith angle: shower can trigger IceTop + TeV muons penetrate in-ice

reconstruction of primary energy based on e.m. shower component

small zenith angle: shower can trigger IceTop + TeV muons penetrate in-ice

reconstruction of primary energy based on e.m. shower component

reconstruction of primary type (mass) based on muonic shower component

unrelated background tracks can sneak in the readout window

- unrelated background tracks can sneak in the readout window
- for low-energy air-showers, existing cleaning methods don't always work (missing surface reconstruction)

- unrelated background tracks can sneak in the readout window
- for low-energy air-showers, existing cleaning methods don't always work (missing surface reconstruction)
- adopt established method pulse series splitting from in-ice analyses

 topological splitting into independent pulse series

- topological splitting into independent pulse series
- fit pulse series separately combined with IceTop

- topological splitting into independent pulse series
- fit pulse series separately combined with IceTop

- topological splitting into independent pulse series
- fit pulse series separately combined with IceTop
- fit pulse series separately alone

- topological splitting into independent pulse series
- fit pulse series separately combined with IceTop
- fit pulse series separately alone

IceTop for Energy

lateral spread and number of TeV muons indicator for primary type

→ manifest in in-ice signal distribution

depth-dependent ice properties simulated

lateral spread and number of TeV muons indicator for primary type

→ manifest in in-ice signal distribution

depth-dependent ice properties simulated

lateral spread and number of TeV muons indicator for primary type

→ manifest in in-ice signal distribution

depth-dependent ice properties simulated

exploit radial symmetry around the track

lateral spread and number of TeV muons indicator for primary type

→ manifest in in-ice signal distribution

depth-dependent ice properties simulated exploit radial symmetry around the track

3D detector → 2D binning ("slant depth along track" and "distance from track")

lateral spread and number of TeV muons indicator for primary type

→ manifest in in-ice signal distribution

Combined Reconstruction

Reconstructing Energy

р

Prediction

р

Prediction

Summary

- low-energy trigger @ IceTop → extension of composition analysis below PeV
- cuts on β and Ψ applicable for in-ice background rejection
- coincident shower measurement crucial for composition
- IceTop + in-ice → CNN → primary type & energy
- future: more primaries
 more statistics

Low-Energy Trigger for IceTop

small zenith angle: shower can trigger IceTop + TeV muons penetrate in-ice

reconstruction of primary energy based on e.m. shower component

> "the more surface signal, the higher the energy"

reconstruction of primary type (mass) based on muonic shower component

"the broader the bundle, the more high-p_T muons and the higher the point of first interaction"

Event Cleaning

"raw" in-ice pulses

31

Event Cleaning

"raw" in-ice pulses

time-window cleaning

Event Cleaning

keep pulse if within distance (150 m) and time (1 µs) range of seed

"raw" in-ice pulses

time-window cleaning

causality cleaning

Muon Bundle Width

Are speed and angle cut both necessary? Or is one of them sufficient?

IceTop for Energy

Reconstructing Energy

Reconstructing Energy

resolution

$$\begin{aligned} & \text{precision}_{p} = \frac{N_{p}^{\prime}(p)}{N_{p}} \\ & \text{precision}_{Fe} = \frac{N_{Fe}(Fe)}{N_{Fe}} \end{aligned}$$

$$egin{aligned} ext{recall}_{ ext{p}} &= rac{N_{ ext{p}}(ext{p})}{N(ext{p})} \ ext{recall}_{ ext{Fe}} &= rac{N_{ ext{Fe}}(ext{Fe})}{N(ext{Fe})} \end{aligned}$$

