Performance of the joint observations with CTA LST-1 and MAGIC

Y. Suda (Hiroshima U.),

A. Berti, F. Di Pierro, Y. Ohtani, J. Sitarek, E. Visentin
on behalf of the CTA-LST Project
and the MAGIC Collaboration

XVIII International Conference on Topics in Astroparticle and Underground Physics 2023 28.08. – 01.09.2023

University of Vienna

Extreme Universe

Imaging Atmospheric Cherenkov Telescopes (IACTs)

- > 200 very-high-energy (VHE, > a few tens of GeV) gamma-ray sources
 - Active Galactic Nuclei, Supernova Remnants, Pulsars, GRBs,...
- IACTs are suitable for studying physics in extreme environments (dense, strong gravity/magnetic field)

- Current generation: MAGIC telescopes
 - Two 17 m IACTs in stereo mode since 2009 (mono 2003) at La Palma, Canaries, Spain. 2200 m a.s.l. 20th anniversary
- Next generation: CTA
 - North (La Palma): 4 LSTs, 9 MSTs
 South (Paranal, Chile): 2 LSTs, 14 MSTs, 37 SSTs
 - The first telescope **LST-1** is a 23 m IACT inaugurated in 2018
 - Constructions for the rest of LSTs (North) are ongoing

LST-1 Crab Nebula paper accepted by ApJ

Joint Observations

- MAGIC telescopes and LST-1 are located at a ~100 m distance
- Comparable to the size of the Cherenkov light pool → Showers can be observed in all three telescopes simultaneously
- Joint observations with LST-1 and MAGIC are expected to achieve better sensitivity w.r.t.
 LST-1 mono due to better rejection of background events (i.e. hadronic showers)
- "Pathfinder" for stereo analysis of CTA telescopes
- In this talk, we show the developed analysis pipeline and the performance of the joint observations
 - Used data set: Crab Nebula (2020/2021 season, 4 hrs in total, 0.9 hrs in Zd < 30 deg.)

Monte Carlo Simulations

 To simulate the same shower events seen by both telescopes, we developed a common simulation and analysis framework

	Air shower	Telescope response	Analysis pipeline
LST	Corsika	sim_telarray	cta-Istchain (python)
MAGIC	Customized Corsika	MagicSoft	MARS (C++)
LST1-MAGIC	Corsika	sim_telarray	magic-cta-pipe (python)

- We implemented MAGIC into sim_telarray and validated it
 - Good agreements in both the reconstructed true number of p.e. and trigger efficiency

Joint Analysis Framework

- MAGIC-CTA-Pipe (MCP) based on ctapipe/Istchain (python)
 - Long-term maintenance, capability for the state-of-the-art technology

Coincident Events

- LST-1 and MAGIC-stereo are operating independently, but all three telescopes point at the same direction in a semi-automatic way for joint observations
- Coincident events can be selected by using GPS time stamp
 - Hardware stereo trigger is under development
- LST-1 is also triggered by most of the gamma rays seen by MAGIC
- MAGIC-only events are excluded since the fraction for background is high
- Higher collection area can be achieved by including LST-1+M1/2 events which would be lost in MAGIC-only analysis (due to image cleaning and quality cuts)

Preminary							
Type	MC γ	MC γ	MC p	Data			
	(wobble)	(diffuse)					
M1+M2	6.2%	4.8%	20.4%	21.5%			
LST-1+M1	7.1%	7.7%	6.2%	5.3%			
LST-1+M2	12.5%	12.6%	11.9%	14.2%			
LST-1+M1+M2	74.1%	74.8%	61.5%	59.0%			

Droliminon

Zd < 30 deg. # of p.e. > 50

DATA-MC Agreements

- Two comparisons to check the data-MC agreements
 - Background comparison: data vs. proton+Helium (with a correction for higher elements) + electrons
 - Gamma comparison: data excess vs. simulated gammas
- Good agreements can be found in most of the parameters

comparison

Bkg

Energy Threshold

- Differential rate plot for a -2.6 slope source at the analysis level (# of p.e. > 50 cut) in Zd < 30 deg.
- 15% improvement in the energy threshold w.r.t.
 MAGIC-only
- Factor of 2 improvement in the collection area at 30 GeV w.r.t. MAGIC-only

SED & Flux Stability

- The data set is mostly at mid-zenith, so that the spectrum starts from ~80 GeV. In agreement with MAGIC and LST-1 curves within 10%
- Flux stability plot tells us a small relative systematic uncertainty needs to be considered to achieve consistency with a constant flux (comparable to MAGIC and LST-1)

Angular Resolution and Background Rejection

- Angular resolution in joint analysis is comparable to that in MAGIC-only MARS analysis. MARS can reconstruct gamma-ray direction better than MCP for MAGIC-only data. Further optimization in MCP can be performed
- While there are no big improvements in both energy and angular resolutions in joint analysis, the background rejection power is found to be higher → Better sensitivity

Angular resolutions

Gamma-ray/Background rates

Differential Sensitivity

- Some data-MC sensitivity mismatch above a few 100
- Joint observations can detect
 30% (40%) weaker flux there
 MAGIC (LST-1)

 → Twice
 - → Twice (three times) shorter observing time required!
 - Similar improvement can be seen in low-Zd (< 30°)

Summary

- Taking advantage of the proximity of the telescopes, we can observe the same shower events under a good coordination between the two collaborations
- Joint simulation and analysis chain have been developed in accordance with the CTA standard
 - Good data-MC agreements in most of the parameters
 - Energy threshold: 15% improvement
 - Collection area: a factor of 2 improvement at 30 GeV
 - Reasonable flux reconstruction achieved
 - Detection of 30% (40%) weaker flux than MAGIC (LST-1) is possible thanks to the better background rejection capability
- We can explore extreme universe by utilizing joint observations two times faster than our previous observations
- Joint performance paper is under a journal review
- LST-1 is the first major operating element of CTAO, and the verification of performance with MAGIC is a key step towards building the full observatory!