

Cosmogenic nuclide production by radiation from supernovae

Róbert Breier, Patrik Čechvala and Jozef Masarik

Department of Nuclear Physics and Biophysics Komensky University, Bratislava, Slovakia

> August 28, 2023 TAUP 2023, Vienna

¹⁰Be flux observed at Dye 3,
 North GRIP in Greenland, and at the South Pole and Dome Fuji in Antarctica.

The 22 year average paleocosmic ray intensity for the period 950-1975 AD(8).

This indicates that the solar conditions during the Spoerer (S) Minimum were similar. That is, the enhancements in 1460 occurred during an interval of very low solar activity.

Particle fluxes calculated with Monte Carlo Codes

- Interactions of GCR and γ-rays with Earth atmosphere and production of secondary particles were simulated with GEANT 4/ MCNP code system
- The atmosphere was irradiated by a flux of GCR protons or γ-rays
- From the fitting of experimental measurements of cosmogenic nuclide production rates in the Moon the effective primary-particle flux above 10 MeV was determined to be 4.56 p cm⁻²s⁻¹. Flux of γ -rays has to be determined
- Differential neutron and proton fluxes J_n(E,d) for energy range 10⁻⁹- 10⁶ MeV were calculated for specific depth d.

GCR primary spectra

Production rate (P) calculation

 Use fluxes J_n calculated by GEANT4 / MCNP for depth d in the irradiated object

Simulation of Cosmic Ray Secondaries in the Atmosphere

Latitude:

9 bins of 10 degrees

Depth:

34 layers of 30 g/cm²

Chemical compositions and density

E kmen t	Soil	A mosp here
H	0.002	
N		0.78
O	0.473	0.21
Na	0.025	
Mg	0.040	
Al	0.060	
Si	0.280	
Ar		0.01
Ca	0.050	
Fe	0.060	

Atmospheric density in g/cm⁻³

•
$$\rho = 1.27 \times 10^{-3} e^{-109h}$$

•
$$\rho$$
=2.03 × 10⁻³e^{-157h}

for
$$h > 9.73 \text{ km}$$

Production rate (P) calculation

 Use fluxes J_n calculated by GEANT / MCNP for depth d in the irradiated object

 Use detailed library of neutron-capture cross sections in MCNP or experimental and evaluated cross sections for spallogenic products

Production rate (P) calculation

 Use fluxes J_n calculated by GEANT / MCNP for depth d in the irradiated object

 Use detailed library of neutron-capture cross sections in MCNP or experimental and evaluated cross sections for spallogenic products

 Integrate fluxes times cross sections (σ) over energy E

$$P(R,d) = \sum_{i} N_{i} \int_{0}^{\infty} \sigma_{ijk} (E_{k}) J_{j}(E_{k},d) dE_{k}$$

Dependence of ¹⁰Be production on solar modulation and magn. field

Possible explanations of observed enhancements

The very low probability of chance occurrence, the excursion above ¹⁰Be(LIS), and the one year duration in the Greenland data indicates that the ¹⁰Be enhancements were not produced by the GCR.

We conclude that they were due to an additional, short lived source of cosmic radiation.

There are two possible candidates;

- (1) solar production of relativistic charged particles; or
- (2) gamma rays produced by a nearby supernova. We now consider both possibilities.

¹⁰Be flux observed at Dye 3,North GRIP in Greenland, and at the South Pole and Dome Fuji in Antarctica.

The 22 year average paleocosmic ray intensity for the period 950-1975 AD(8).

This indicates that the solar conditions during the Spoerer (S) Minimum were similar. That is, the enhancements in 1460 occurred during an interval of very low solar activity.

Model spectrum for y-rays from SN

Konus-Wind spectrum in 20 keV – 5 MeV (GCN 7751). E [keV]
The same Band model fits the spectrum from 20 keV up to 50 MeV.

Ettore Del Monte, INAF IASF Roma

RICAP '09, 14 May 2009

Results of γ-rays simulation

• As done previously for galactic cosmic rays (GCR), we have used the GEANT particle transport code to determine the ¹⁰Be yield of a unidirectional beam of high energy gamma rays, with a spectrum that peaks at 70 MeV.

Results

- The production efficiency is much lower than for the GCR, however there is a partially compensating factor in that the geomagnetic field has no screening effect as in the case of the GCR. We find that a high energy gamma photon has a ¹⁰Be yield that is a factor of 100-130 times less than that of a relativistic cosmic ray.
- The cross-sections for ¹⁴C producing photo-spallation reactions are larger than those for ¹⁰Be. For the gamma spectrum used above, the GEANT4 code predicts a ~ 5-times greater yield for ¹⁴C yield compared to ¹⁰Be. The yield can be higher (~7-times) for a gamma spectrum with a strong lower energy bremsstrahlung component

Conclusions

- The estimated gamma fluence of $\sim 9 \times 10^9$ photons/ cm² yields approximately the same quantity of ¹⁰Be as is produced by the galactic cosmic rays in one year, consistent with the observed enhancements.
- The South- North asymmetry, the predicted one year pulse duration, and the predicted gamma ray fluence from a nearby (200pc) Type II SN are therefore all consistent with the hypothesis that the ¹⁰Be enhancements in 1460 are a terrestrial record of the Vela Junior SN.
- Detailed modelling of the photo-spallation process will provide a better estimate of the gamma fluence at Earth from the ¹⁰Be observations themselves.