Constraining hadronic models using pO collisions at the LHC with proton/neutron tagging

31 August 2023

Michael Pitt ${ }^{1,2}$

${ }^{1}$ Ben Gurion University of the Negev (Israel)
${ }^{2}$ The University of Kansas (USA)

```
אוניברסיטת בן-גוריון בנגב
جامعة بن غوريون في النقب
Ben-Gurion University of the Negev
```


Outline

- Accelerating Oxygen ions at the LHC
- Forward proton and neutron tagging at the LHC
- Constraining models of hadronic showers using pO collisions
- Production of light isotopes on pO and OO collisions

Accelerating Oxygen ions at the LHC

Motivation

Oxygen ions at the LHC

- Oxygen ions $\left({ }^{16} o\right)$ will be injected at the LHC for the first time.
- pO run is scheduled to take place in 2024 , with a run duration of a few days
- The main goal of the run is to provide input for cosmic ray modeling

A. D. Supanitsky Galaxies 10 (2022) 3, 75

Constrain hadronic models with pO collisions

Opportunities of OO and pO collisions at the LHC

- Discussed in 2021 at a dedicated workshop at CERN (http://cern.ch/OppOatLHC)
- Summary available here $\underline{2103.01939}$

Constrain hadronic models with pO collisions

Extending current research program

- Besides the standard research program involving pO / OO interactions, we suggest utilizing the forward proton and forward neutron detectors to expand the probed phase-space (this talk)

Forward proton and neutron tagging at the LHC

The Large Hadron Collider

- The most powerful particle accelerator and the largest CERN accelerator complex.
- Designed to accelerate hadrons (protons/heavy ions) up to 7 TeV per proton beam
- 4 Interaction points in the center of 4 detectors (ATLAS, ALICE, CMS, LHCb)

The Large Hadron Collider

- The most powerful particle accelerator and the largest CERN accelerator complex.
- Designed to accelerate hadrons (protons/heavy ions) up to 7 TeV per proton beam
- 4 Interaction points in the center of 4 detectors (ATLAS, ALICE, CMS, LHCb)
- In practice LHC comprise more than 4 experiments
- Example: neutrino physics (see Neutrino physics and astrophysics parallel session)

```
- SND@LHC (M. Güler's talk on Monday)
- FASER (Y. Takubo's talk on Monday)
```


The Large Hadron Collider

- The most powerful particle accelerator and the largest CERN accelerator complex.
- Designed to accelerate hadrons (protons/heavy ions) up to 7 TeV per proton beam
- 4 Interaction points in the center of 4 detectors (ATLAS, ALICE, CMS, LHCb)
- In practice LHC comprise more than 4 experiments
- Example: neutrino physics (see Neutrino physics and astrophysics parallel session)
- SND@LHC (M. Güler's talk on Monday)
- FASER (Y. Takubo's talk on Monday)

The Large Hadron Collider

- The most powerful particle accelerator and the largest CERN accelerator complex.
- Designed to accelerate hadrons (protons/heavy ions) up to 7 TeV per proton beam
- 4 Interaction points in the center of 4 detectors (ATLAS, ALICE, CMS, LHCb)
- In practice LHC comprise more than 4 experiments
- Example: neutrino physics (see Neutrino physics and astrophysics parallel session)
- SND@LHC (M. Güler's talk on Monday)
- FASER (Y. Takubo's talk on Monday)

Forward detectors at the LHC

- Two interaction points (CMS / ATLAS) are equipped with forward neutron / proton detectors at about $140 \mathrm{~m} / 220 \mathrm{~m}$ from the IP, respectively on both sides.

Forward neutron detectors

- The Zero Degree Calorimeter (ZDC) aims to detect forward neutral particles produced during heavy ion ($A A$ or $p A$) collisions

- Located in the Target Absorber for Neutrals (TAN) ~ 140 m from the IP

ZDC Final design:

- EM section - photons, ~30 rad. length
- Reaction Plane Detector (RPD) transverse profile of neutron showers
- Had section - neutrons (3 modules each ~1.15 int. length)

RPD section details
RPD fused silica fiber lengths $\mathrm{L}=9.60[\mathrm{~mm}]$ $\begin{array}{ll}\mathrm{L2} & =19.20[\mathrm{~mm}] \\ \end{array}$ $13=28.80[\mathrm{~mm}]$ $\mathbf{L 4}=\mathbf{3 8 . 4 0 [m m}]$
\qquad $=38.40[\mathrm{~mm}]$

RPD fused silica fibers arrangement
(active area onlly (active area only-supportrt lates not displayed for better visibility)

Forward proton detectors

- Forward Proton Spectrometers (AFP/PPS):
- Intact protons lose a fraction of momentum ($\left.\xi=\Delta p_{Z} / p\right)$ and are scattered at small angles $\left(\boldsymbol{\theta}_{\boldsymbol{x}}^{*}, \boldsymbol{\theta}_{\boldsymbol{y}}^{*}\right) \rightarrow$ they are deflected away from the beam and measured by the spectrometers

$$
\begin{aligned}
& \delta x(z)=x_{D}(\xi)+v_{x}(\xi) x^{*}+L_{x}(\xi) \theta_{x}^{*} \\
& \delta y(z)=y_{D}(\xi)+v_{y}(\xi) y^{*}+L_{y}(\xi) \theta_{y}^{*}
\end{aligned}
$$

Forward proton detectors

- Forward Proton Spectrometers (AFP/PPS):
- Intact protons lose a fraction of momentum ($\left.\xi=\Delta p_{Z} / p\right)$ and are scattered at small angles $\left(\boldsymbol{\theta}_{\boldsymbol{x}}^{*}, \boldsymbol{\theta}_{\boldsymbol{y}}^{*}\right) \rightarrow$ they are deflected away from the beam and measured by the spectrometers

$$
\begin{aligned}
& \delta x(z)=x_{D}(\xi)+v_{x}(\xi) x^{*}+L_{x}(\xi) \theta_{x}^{*} \\
& \delta y(z)=y_{D}(\xi)+v_{y}(\xi) y^{*}+L_{y}(\xi) \theta_{y}^{*}
\end{aligned}
$$

$\delta x(z)=x_{D}(\xi)+v_{x}(\xi) x^{*}+L_{x}(\xi) \theta_{x}^{*}$
$\delta y(z)=y_{D}(\xi)+v_{y}(\xi) y^{*}+L_{y}(\xi) \theta_{y}^{*}$

Forward proton detectors

- Forward Proton Spectrometers (AFP/PPS):

$$
\begin{aligned}
& \delta x(z)=x_{D}(\xi)+v_{x}(\xi) x^{*}+L_{x}(\xi) \theta_{x}^{*} \\
& \delta y(z)=y_{D}(\xi)+v_{y}(\xi) y^{*}+L_{y}(\xi) \theta_{y}^{*}
\end{aligned}
$$

Detector @200m

Forward proton detectors

- Forward Proton Spectrometers (AFP/PPS):

- Intact protons lose a fraction of momentum ($\left.\xi=\Delta p_{Z} / p\right)$ and are scattered at small angles $\left(\boldsymbol{\theta}_{x}^{*}, \boldsymbol{\theta}_{y}^{*}\right) \rightarrow$ they are deflected away from the beam and measured by the spectrometers

$$
\begin{aligned}
& \delta x(z)=x_{D}(\xi)+v_{x}(\xi) x^{*}+L_{x}(\xi) \theta_{x}^{*} \\
& \delta y(z)=y_{D}(\xi)+v_{y}(\xi) y^{*}+L_{y}(\xi) \theta_{y}^{*}
\end{aligned}
$$

Forward proton detectors

- Forward Proton Spectrometers (AFP/PPS):

- Intact protons lose a fraction of momentum ($\left.\xi=\Delta p_{Z} / \boldsymbol{p}\right)$ and
acceptance
$2.5 \%<\xi<15 \%$ are scattered at small angles $\left(\boldsymbol{\theta}_{\boldsymbol{x}}^{*}, \boldsymbol{\theta}_{\boldsymbol{y}}^{*}\right) \rightarrow$ they are deflected away from the beam and measured by the spectrometers
min distance
from the beam

Collimators

$$
\begin{aligned}
& \delta x(z)=x_{D}(\xi)+v_{x}(\xi) x^{*}+L_{x}(\xi) \theta_{x}^{*} \\
& \delta y(z)=y_{D}(\xi)+v_{y}(\xi) y^{*}+L_{y}(\xi) \theta_{y}^{*}
\end{aligned}
$$

2 stations

Constraining models of hadronic showers using pO collisions

Forward protons / neutrons in p-O collisions

- High energy protons and neutrons emerge from p-O interactions
- By measuring the production rates, and event kinematics one can constrain their modeling

Forward protons / neutrons in p-O collisions

- High energy protons and neutrons emerge from p-O interactions
- By measuring the production rates, and event kinematics one can constrain their modeling

Forward protons / neutrons in p-O collisions

- High energy protons and neutrons emerge from p-O interactions
- By measuring the production rates, and event kinematics one can constrain their modeling

Proton kinematics

- About $\sim 20 \%$ of $p-O$ interactions will have an intact proton (ξ ~ inelasticity K)

Proton kinematics

- About $\sim 20 \%$ of $p-O$ interactions will have an intact proton (ξ ~ inelasticity K)
- In 2-4\% of all events proton momentum loss is within $2.5 \%<\xi<15 \%$

Proton kinematics

- About $\sim 20 \%$ of $p-O$ interactions will have an intact proton ($\xi \sim$ inelasticity K)
- In 2-4\% of all events proton momentum loss is within $2.5 \%<\xi<15 \%$

- Comparison between EPOS-LHC and Sibyll2.3d - some difference between the generators

Rapidity gaps in color neutral exchange

- Events with a diffractive proton are characterized by the presence of large Rapidity Gaps (RG) (~ relative to the shower width)
- This component is weakly constrained in the current models (example from CMS $p \mathrm{~Pb}$ data arxiv:2301.07630)

Rapidity gaps in color neutral exchange

- Events with a diffractive proton are characterized by the presence of large Rapidity Gaps (RG)
- Using the RG, some diffractive events escape detection

Rapidity gaps in color neutral exchange

- Events with a diffractive proton are characterized by the presence of large Rapidity Gaps (RG)
- Using the RG, some diffractive events escape detection, but can be recovered using proton tag

Rapidity gaps in color neutral exchange

- Events with a diffractive proton are characterized by the presence of large Rapidity Gaps (RG)
- Using the RG, some diffractive events escape detection, but can be recovered using p / n tag

Rapidity gaps in color neutral exchange

- Events with a diffractive proton are characterized by the presence of large Rapidity Gaps (RG)
- Using the RG, some diffractive events escape detection, but can be recovered using p/n tag

Measurements with forward n / p detectors can probe additional phase-space to LHCf/LHCb in constraining the modeling of pO interactions!

EPOS-LHC Simulation

Production of light isotopes on pO and OO collisions

Ion tagging at the LHC

- On the ion side, oxygen ions will disintegrate, protons and neutrons will carry half of the beam momentum and ion remnants can form various isotopes.

$$
E_{N}=1 \cdot\left(\frac{Z_{O}}{A_{O}} E_{p}\right)=\frac{1}{2} E_{p}
$$

- While neutrons can be measured with ZDC, protons have very low momentum (0.5 the nominal) to reach the FPS.
- Yet, some lighter ions with different kinematics can reach the FPS

$$
E_{A_{0}}=A_{0} \cdot \underbrace{\left(\frac{Z_{O}}{A_{O}} E_{p}\right)}_{\text {Energy } / \text { nucleon }}
$$

$$
E_{A_{1}}=A_{1} \cdot\left(\frac{Z_{O}}{A_{O}} E_{p}\right)
$$

Ion tagging at the LHC

- On the ion side, oxygen ions will disintegrate, protons and neutrons will carry half of the beam momentum and ion remnants can form various isotopes.

$$
E_{N}=1 \cdot\left(\frac{Z_{O}}{A_{O}} E_{p}\right)=\frac{1}{2} E_{p}
$$

- While neutrons can be measured with ZDC, protons have very low momentum (0.5 the nominal) to reach the FPS.
- Yet, some lighter ions with different kinematics can reach the FPS
- Proton detector as ion "mass" (A/Z) spectrometer!

$$
\begin{gathered}
E_{A_{0}}=\underbrace{}_{A_{0}} \cdot \underbrace{\left(\frac{Z_{o}}{A_{o}} E_{p}\right)}_{\text {Energy } / \text { nucleon }} \\
E_{A_{1}}=A_{1} \cdot\left(\frac{Z_{o}}{A_{o}} E_{p}\right) \\
\text { Low energy } \\
\text { nuclear physics }
\end{gathered}
$$

Summary

Proton/Neutron tagging

- Participation of ZDC/FPS detectors in p-O / O-O collisions are currently investigated
- Improved modeling of (in)elasticity in proton - Air collisions
- Proton/Neutron tagging in pO covers a complementary phase-space to the standard program.
- As a by-product, we can commission proton spectrometers for any future pA LHC Runs

Ion tagging

- Forward spectrometers sensitive to a few ions -> systematic measurements of ion disintegration.
- Can a combined measurement of forward spectrometer + ZCD shade light on ion disintegration?
- Challenges - tracking with high Q, multiple scattering, kinematic ranges, Fermi motion

Feedback is welcomed: feel free to contact michael.pitt@cern.ch

Backup

LHC Run schedule

Last update: April 2023
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

Shutdown/Technical stop Protons physics Ions
Commissioning with beam Hardware commissioning

