Constraining hadronic models using pO collisions at the LHC with proton/neutron tagging

31 August 2023

Michael Pitt^{1,2}

¹Ben Gurion University of the Negev (Israel) ²The University of Kansas (USA)

אוניברסיטת בן-גוריון בנגב אוניברסיטת בן-גוריון בנגב جامعة بن غوريون في النقب Ben-Gurion University of the Negev

Outline

- Accelerating Oxygen ions at the LHC
- Forward proton and neutron tagging at the LHC
- Constraining models of hadronic showers using pO

collisions

Production of light isotopes on pO and OO collisions

Accelerating Oxygen ions at the LHC

Motivation

Oxygen ions at the LHC

- Oxygen ions (¹60) will be injected at the LHC for the first time.
- p0 run is scheduled to take place in 2024, with a run duration of a few days
- The main goal of the run is to provide input for cosmic ray modeling

A. D. Supanitsky Galaxies 10 (2022) 3, 75

http://hyperphysics.phy-astr.gsu.edu/hbase/Astro/cosmic.html

Constrain hadronic models with p0 collisions

Opportunities of OO and pO collisions at the LHC

- Discussed in 2021 at a dedicated workshop at CERN (http://cern.ch/OppOatLHC)
- Summary available here <u>2103.01939</u>

Constrain hadronic models with p0 collisions

Extending current research program

Besides the standard research program involving pO / OO interactions, we suggest utilizing the forward proton and forward neutron detectors to expand the probed phase-space (this talk)

Forward proton and neutron tagging at the LHC

- The most powerful particle accelerator and the largest CERN accelerator complex.
- Designed to accelerate hadrons (protons/heavy ions) up to 7 TeV per proton beam
- 4 Interaction points in the center of 4 detectors (ATLAS, ALICE, CMS, LHCb)

- The most powerful particle accelerator and the largest CERN accelerator complex.
- Designed to accelerate hadrons (protons/heavy ions) up to 7 TeV per proton beam
- 4 Interaction points in the center of 4 detectors (ATLAS, ALICE, CMS, LHCb)
- In practice LHC comprise more than 4 experiments
- Example: neutrino physics (see <u>Neutrino physics</u> and astrophysics parallel session)
 - SND@LHC (M. Güler's talk on Monday)
 - FASER (Y. Takubo's talk on Monday)

- The most powerful particle accelerator and the largest CERN accelerator complex.
- Designed to accelerate hadrons (protons/heavy ions) up to 7 TeV per proton beam
- 4 Interaction points in the center of 4 detectors (ATLAS, ALICE, CMS, LHCb)
- In practice LHC comprise more than 4 experiments
- Example: neutrino physics (see <u>Neutrino physics</u> and astrophysics parallel session)
 - SND@LHC (M. Güler's talk on Monday)
 - FASER (Y. Takubo's talk on Monday)

- The most powerful particle accelerator and the largest CERN accelerator complex.
- Designed to accelerate hadrons (protons/heavy ions) up to 7 TeV per proton beam
- 4 Interaction points in the center of 4 detectors (ATLAS, ALICE, CMS, LHCb)
- In practice LHC comprise more than 4 experiments
- Example: neutrino physics (see <u>Neutrino physics</u> and astrophysics parallel session)
 - SND@LHC (M. Güler's talk on Monday)
 - FASER (Y. Takubo's talk on Monday)

31 August 2023

Forward detectors at the LHC

 Two interaction points (CMS / ATLAS) are equipped with forward neutron / proton detectors at about 140 m / 220 m from the IP, respectively on both sides.

Forward neutron detectors

 The Zero Degree Calorimeter (ZDC) aims to detect forward neutral particles produced during heavy ion (AA or pA) collisions

 Located in the Target Absorber for Neutrals (TAN) ~ 140 m from the IP

ZDC Final design:

- EM section photons, ~30 rad. length
- Reaction Plane Detector (RPD) –
 transverse profile of neutron showers
- Had section neutrons (3 modules each
 ~1.15 int. length)

- Forward Proton Spectrometers (AFP/PPS):
- Intact protons lose a fraction of momentum ($\xi = \Delta p_Z/p$) and are scattered at small angles (θ_x^*, θ_y^*) \to they are deflected away from the beam and measured by the spectrometers

$$\delta x(z) = x_D(\xi) + v_x(\xi)x^* + L_x(\xi)\theta_x^*$$

$$\delta y(z) = y_D(\xi) + v_y(\xi)y^* + L_y(\xi)\theta_y^*$$

- Forward Proton Spectrometers (AFP/PPS):
- Intact protons lose a fraction of momentum ($\xi = \Delta p_Z/p$) and are scattered at small angles (θ_x^*, θ_y^*) \to they are deflected away from the beam and measured by the spectrometers

- Forward Proton Spectrometers (AFP/PPS):
 - Intact protons lose a fraction of momentum ($\xi = \Delta p_Z/p$) and are scattered at small angles (θ_x^*, θ_y^*) \to they are deflected away from the beam and measured by the spectrometers

$$\delta x(z) = x_D(\xi) + v_x(\xi)x^* + L_x(\xi)\theta_x^*$$

$$\delta y(z) = y_D(\xi) + v_y(\xi)y^* + L_y(\xi)\theta_y^*$$

- Forward Proton Spectrometers (AFP/PPS):
- Intact protons lose a fraction of momentum ($\xi = \Delta p_Z/p$) and are scattered at small angles (θ_x^*, θ_y^*) \to they are deflected away from the beam and measured by the spectrometers

- Forward Proton Spectrometers (AFP/PPS):
 - Intact protons lose a fraction of momentum ($\xi = \Delta p_Z/p$) and are scattered at small angles (θ_x^*, θ_y^*) \to they are deflected away from the beam and measured by the spectrometers

$$\delta x(z) = x_D(\xi) + v_x(\xi)x^* + L_x(\xi)\theta_x^*$$

$$\delta y(z) = y_D(\xi) + v_y(\xi)y^* + L_y(\xi)\theta_y^*$$

M. Pitt @ TAUP2023

acceptance 2.5% < *ξ* < 15%

min distance from the beam

Collimators

18

Constraining models of hadronic showers using pO collisions

Forward protons / neutrons in p-O collisions

- High energy protons and neutrons emerge from p-O interactions
- By measuring the production rates, and event kinematics one can constrain their modeling

Forward protons / neutrons in p-O collisions

- High energy protons and neutrons emerge from p-O interactions
- By measuring the production rates, and event kinematics one can constrain their modeling

Forward protons / neutrons in p-O collisions

- High energy protons and neutrons emerge from p-O interactions
- By measuring the production rates, and event kinematics one can constrain their modeling

Proton kinematics

• About ~20% of p-O interactions will have an intact proton (ξ ~ inelasticity K)

Proton kinematics

- About ~20% of p-O interactions will have an intact proton (ξ ~ inelasticity K)
- In 2-4% of <u>all events</u> proton momentum loss is within $2.5\% < \xi < 15\%$

Proton kinematics

- About ~20% of p-O interactions will have an intact proton (ξ ~ inelasticity K)
- In 2-4% of <u>all events</u> proton momentum loss is within $2.5\% < \xi < 15\%$
- Comparison between EPOS-LHC and Sibyll2.3d some difference between the generators

MC Simulaiton

EPOS - LHC

systematics (Sibyll)

Sibyll 2.3d

proton p_ [GeV]

 Events with a diffractive proton are characterized by the presence of large Rapidity Gaps (RG) (~ relative to the shower width)

This component is weakly constrained in the current models

(example from CMS pPb data <u>arXiv:2301.07630</u>)

Por γ

Pb

- Events with a diffractive proton are characterized by the presence of large Rapidity Gaps (RG)
- Using the RG, some diffractive events escape detection

- Events with a diffractive proton are characterized by the presence of large Rapidity Gaps (RG)
- Using the RG, some diffractive events escape detection, but can be recovered using proton tag

- Events with a diffractive proton are characterized by the presence of large Rapidity Gaps (RG)
- Using the RG, some diffractive events escape detection, but can be recovered using p/n tag

- Events with a diffractive proton are characterized by the presence of large Rapidity Gaps (RG)
- Using the RG, some diffractive events escape detection, but can be recovered using p/n tag

Measurements with forward n/p detectors can probe additional phase-space to LHCf/LHCb in constraining the modeling of pO interactions!

Production of light isotopes on pO and OO collisions

Ion tagging at the LHC

 On the ion side, oxygen ions will disintegrate, protons and neutrons will carry half of the beam momentum and ion remnants can form various isotopes.

$$E_N = 1 \cdot \left(\frac{Z_O}{A_O} E_p\right) = \frac{1}{2} E_p$$

Proton

- While neutrons can be measured with ZDC, protons have very low momentum (0.5 the nominal) to reach the FPS.
- Yet, some lighter ions with different kinematics can reach the FPS

Ion tagging at the LHC

- On the ion side, oxygen ions will disintegrate, protons and neutrons will carry half of the beam momentum and ion remnants can form various isotopes.
- $E_N = 1 \cdot \left(\frac{Z_O}{A_O} E_p\right) = \frac{1}{2} E_p$

Proton

- While neutrons can be measured with ZDC, protons have very low momentum (0.5 the nominal) to reach the FPS.
- Yet, some lighter ions with different kinematics can reach the FPS
- Proton detector as ion "mass" (A/Z) spectrometer!

Low energy nuclear physics

Summary

Proton/Neutron tagging

- Participation of ZDC/FPS detectors in p-O / O-O collisions are currently investigated
- Improved modeling of (in)elasticity in proton Air collisions
- Proton/Neutron tagging in pO covers a complementary phase-space to the standard program.
- As a by-product, we can commission proton spectrometers for any future pA LHC Runs

Ion tagging

- Forward spectrometers sensitive to a few ions -> systematic measurements of ion disintegration.
- Can a combined measurement of forward spectrometer + ZCD shade light on ion disintegration?
- Challenges tracking with high Q, multiple scattering, kinematic ranges, Fermi motion

Feedback is welcomed: feel free to contact michael.pitt@cern.ch

Backup

LHC Run schedule

Last update: April 2023

https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

