

The SND@LHC Experiment @CERN-LHC

A. Murat Güler (METU)
On behalf of the SND@LHC Collaboration

XVIII International Conference on Topics in Astroparticle and Underground Physics 2023 28 August - 1 September, University of Vienna

Detection of LHC neutrinos

- LHC operates as a **neutrino** factory
 - Large neutrino flux in the forward region.
 - Highest energy human-made neutrinos.
 - Neutrinos of all flavours can be observed by a small-scale experiment at the LHC
- Idea of detection of LHC neutrinos goes back to 80's

CERN-1984-010-V-2.571; Nucl. Phys. B405, 80; LPNHE-93-03

- \circ seen as an opportunity to discover the ν_{τ}
- SND@LHC operates near the the ATLAS interaction point since June 2022.
 - Reported the **detection** of the LHC neutrinos
 Phys.Rev.Lett. 131 (2023) 3, 031802

Scattering and Neutrino Detector @ the LHC

- It is located in the TI18 tunnel, former positron transfer line to LEP;
 - 480 m away from the ATLAS interaction point (IP1)
 - Covered angular acceptance of (off axis) $7.2 < \eta < 8.4$
 - o Shielded by 100 m rock
- LHC magnet deflects charged particles
- Neutrinos and (if exist) feebly interacting particles (FIPs) interact in the detector

Physics Program

Neutrino interactions

- \circ $\sigma_{pp} \rightarrow \nu X \text{ in } 7.2 < \eta < 8.4 \text{ range}$
- o NC/CC measurement for consistency check

QCD

- Decays of charm hadrons contribute significantly to the neutrino flux.
- Measure forward charm production with neutrinos.
- o Constrain gluon PDF at very small x.

Lepton Flavour Universality

• Detection of all three types of neutrinos allows for tests of lepton flavour universality.

Beyond the Standard Model

 Search for feebly interacting, particles decaying within the detector or scattering off the target.

	Neutrinos in acceptance		CC neutrino interactions		NC neutrino interactions	
Flavour	$\langle E \rangle [GeV]$	Yield	$\langle E \rangle [GeV]$	Yield	$\langle E \rangle \ [GeV]$	Yield
$ u_{\mu}$	120	3.4×10^{12}	450	1028	480	310
$ar{ u}_{\mu}$	125	3.0×10^{12}	480	419	480	157
$ u_e$	300	4.0×10^{11}	760	292	720	88
$ar{ u}_e$	230	4.4×10^{11}	680	158	720	58
$ u_{ au}$	400	2.8×10^{10}	740	23	740	8
$ar{ u}_{ au}$	380	3.1×10^{10}	740	11	740	5
TOT		7.3×10^{12}		1930		625

Sensitivity of the experiment to the leptophobic portal

The SND@LHC Detector Layout

- Veto system
- o Two 1 cm thick scintillator planes.
- Target, vertex detector and ECAL
 - o 830 kg tungsten target.
 - o Five walls x 59 emulsion layers
 - + five scintillating fibre stations.
 - o $84 X_0$, $3 \lambda_{int}$
- HCAL and MUON system
 - Eight 20 cm Fe blocks + scintillator planes.
 - O Last 3 planes have finer granularity to track muons, 9.5 $λ_{int}$

- Cross-sectional area: 40 x 40 cm²
- Length: 2.6 m

arXiv 2210.02784 to appear on JINST

Data Taking

August 2020:

Letter of Intent published

March 2021:

Approval by CERN Research Board

December 2021:

Detector installed

April 2022:

First data taken

- SND@LHC is operating since the start of Run 3 of the LHC.
- Extremely successful data-taking campaigns in 2022.
 - o Electronic detectors uptime of ~95%.
- Three emulsion detector exchanges in SND@LHC
- Additional ~30 fb⁻¹ will be collected in 2023.

Run Period- 2022	Target Mass(kg)	Integrated Luminosity(fb ⁻¹)
Run0(AprJuly)	39	0.46
Run1(July-Sept.)	807	9.5
Run2(SeptNov.)	784	20.0
Run3(Nov.Dec.)	792	8.6

Emulsion Data

- Event reconstruction in the emulsion target
 - o Identify e.m. showers
 - Neutrino vertex reconstruction and 2ry search
 - Match with candidates from electronic detectors (time stamp)
 - Complement target tracker for e.m. energy measurement

Emulsion scanning & analysis are ongoing

Muon Reconstruction

Emulsion Reconstruction

Muon tracks in 1x1cm² Integrated in Run0 of 0.51 fb⁻¹ (07/04-26/07)

Emulsion/ SciFi distributions are agree within 10%

Emulsion tracks from RUN0

SciFi tracks from RUN0

Muon Reconstruction

Measurement of the muon, using the SciFi tracker and downstream muon detector

Reconstructed DS tracks x – y profile at the upstream detector face

Reconstructed SciFi tracks x – y profile at the upstream detector face

L _{int} [fb ⁻¹]	N_{ev} [10 ⁶]	t[h]
0.337	71	12.5
0.529	106	19.8

Data / MC agreement @ 20-25 % level

 $1.79 \pm 0.03(\text{stat}) \pm 0.15(\text{sys}) \times 10^4 \text{ fb/cm}^2$

F. Cerutti, M.S. Gilarte **CERN-SY/STI**

 $2.06 \pm 0.01(\text{stat}) \pm 0.11(\text{sys}) \times 10^4 \,\text{fb/cm}^2$ 0.4 0.3 0.2 x [cm]

Muon flux from FLUKA

Observation of Muon Neutrino Interactions

■ Analysis of 2022 dataset, corresponding to 36.8 fb⁻¹

- Expected signal yield ($\vartheta_{\mu} + \overline{\vartheta}_{\mu}$ interactions): 157 ± 37
- Challenge: background from $\sim 10^9$ muons
- Counting-based approach
- Use information from electronic detectors only

Event Selection

 Adopting a selection with strong rejection power, designed to yield a clean set of events

Fiducial volume

- Neutral vertex 3th or 4th wall.
- Reject side-entering backgrounds.
- o Signal acceptance: 7.5%

Muon neutrino identification

- Large scintillating fibre detector activity.
- Large HCAL activity.
- One muon track associated to the vertex.
- hit time distribution consistent with an event from IP1
- Signal selection efficiency: 36%

Number of ν_{μ} CC events expected in 36.8 fb⁻¹ after cuts: 4.2

ν_{μ} CC simulation

Backgrounds

Entering muons

- Incoming muon track may be missed due to detector inefficiency.
- o Shower induced by DIS or EM activity.
- Number of muons in acceptance: 5 x 10⁸
- o Detector inefficiency: 5 x 10⁻¹²
 - Two veto and two scintillating fibre planes.
- Negligible background with tight fiducial volume.

Neutral hadrons

- Neutral hadrons are produced in muon DIS in materials upstream of the detector.
- Muon from pion decay-in-flight or charm production.
- Expect a total of $(8.6 \pm 3.8) \times 10^{-2}$ background events due to neutral hadrons.

:= within SND@LHC acceptance

SND@LHC neutrino observation

Observed eight neutrino event candidates with a statistical significance of $6.8 \, \sigma$

PRL 131, 031802 (2023)

Summary

- Neutrinos produced in proton-proton collisions have been detected for the first time!
- $8 \nu_{\mu}$ CC candidates are identified in the CC interaction with the electronic detectors while the estimated backgrounds are 0.2.

 Phys.Rev.Lett. 131 (2023) 3, 031802
- This marks the start of an exciting new era of neutrino measurements at the LHC.
 - Neutrino physics measurements
 - Heavy Flavour production,
 - Lepton Flavour Universality with neutrinos
 - Feebly Interacting Particles searches

Neutrino interactions

- Measure ν interactions in unexplored ~TeV energy range
- Measuring the NC/CC ratio
- Large yield of ν_{τ} will more than double existing data.
 - About 20 events observed by DONuT and OPERA.
- The NC/CC ratio in case of DIS can be written as

$$P = \frac{1}{2} \left\{ 1 - 2\sin^2 \theta_W + \frac{20}{9} \sin^4 \theta_W - \lambda (1 - 2\sin^2 \theta_W) \sin^2 \theta_W \right\}$$

Rept.Prog.Phys. 79 (2016) 12, 124201

P measurement used as an internal consistency check

	Neutrinos i	n acceptance	CC neutrino	interactions	NC neutrino	interactions
Flavour	$\langle E \rangle [GeV]$	Yield	$\langle E \rangle [GeV]$	Yield	$\langle E \rangle [GeV]$	Yield
$ u_{\mu}$	120	3.4×10^{12}	450	1028	480	310
$ar{ u}_{\mu}$	125	3.0×10^{12}	480	419	480	157
$ u_e$	300	4.0×10^{11}	760	292	720	88
$ar{ u}_e$	230	4.4×10^{11}	680	158	720	58
$ u_{ au}$	400	2.8×10^{10}	740	23	740	8
$ar{ u}_{ au}$	380	3.1×10^{10}	740	11	740	5
TOT		7.3×10^{12}		1930		625

Heavy flavor Physics:

- 90% of v_e and anti-v_e produced in SND@LHC comes from charmed hadron decay.
 - This provides opportunities to:
 - Measure the pp $\rightarrow v_e X$ cross section
 - Measure forward charm production with neutrinos

[J. Phys. G: Nucl. Part. Phys. 47 125004

• Correlation between pseudo-rapidity of the (anti-) v_{α} and the parent charmed hadron

Neutrinos in SND@LHC acceptance

$$N(c-mesons) = N(\vartheta_e + \overline{\vartheta}_e)x\frac{f_{AB}}{f_{AC}}x\frac{1}{Br(c \to \vartheta_e)}$$

• The identification of **three neutrino flavours** in the SND@LHC detector offers a unique possibility to test the **Lepton Flavor Universality(LFU)**.

$$R_{13} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\tau + \overline{\nu}_\tau}} = \frac{\sum_i \tilde{f}_{c_i} \tilde{Br}(c_i \to \nu_e)}{\tilde{f}_{D_s} \tilde{Br}(D_s \to \nu_\tau)},$$

 Sensitive to v-nucleon interaction crosssection ratio of two neutrino species

$$R_{12} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\mu + \overline{\nu}_\mu}} = \frac{1}{1 + \omega_{\pi/k}}.$$
 contamination from π/k

The measurement of the v_e/v_μ ratio can be used as a test of the LFU for E>600 GeV

SND@LHC experiment can explore a large variety of Beyond Standard Model
 (BSM) scenarios describing Hidden Sector

 FIPs production mechanisms (Bremsstrahlung (a), Meson Decay(b) and Drell-Yan (c))

■ FIPs **scattering** (*e.g. Light Dark Matter*)

- FIPs decay
 - HNL, Dark Scalar, Dark Photon decaying into a pair of charged tracks, pointing back to the IP

