A New ⁸²Se detector for Neutrinoless Double Beta Decay Searches

Emilio Ciuffoli

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China email: emilio@impcas.ac.cn

TAUP2023

28 August - 1 September 2023, Vienna, Austria

Neutrinoless Double Beta Decay

- Neutrinos are the only particles in the SM that can have Majorana mass term
- \bullet For certain atoms, single β decay is not energetically favored, but double β decay is
- "Smoking gun": neutrinoless double beta decay (bump at the end-point of double beta decay), lepton-violating process
- Extremely low background and excellent energy resolution needed

$N\nu DEx$

 $N\nu$ DEx: No ν Double beta decay Experiment, HP⁸²SeF₆ TPC

- Q-value=2.998 MeV ⇒ above most natural background
- Signal-background discrimination via event topology
- Placed at China JinPing Laboratory (CJPL), 2,400 m rock overburden ⇒ background strongly suppressed
- SeF $_6$ is toxic (<0.05 ppm in environment) and electronegative: negative ions will drift
- Topmetal-S sensor designed to detect negative ions, give us good energy resolution without e^- avalanche amplification $\sim \! 1\%$ FWHM \Rightarrow ROI: 30 keV

Topmetal-S Sensor

- Two tapeouts already conducted, third one under production
- First tapeout was tested with α , issues with the signal collected (5% of the expected value)
- Chips were redesigned, according to preliminary tests, this problem was solved in the second tapeout
- Input noise<130 e $^-$ achieved so far, NuDEx goal: 45 e $^-$

See also C. Gao et al., PoS TWEPP2018(2019); B. You et al., Nucl. Instrum. Meth. A 988 (2021), 164871

$N\nu$ DEx-100

- 100 Kg of SeF₆ (10 atm).
- Start with SF_6 (non poisonous) to check for gas the system, then switch to SeF_6
- First run (2025): nat. Se, applying for funding for enrich. Se
- CDR posted on arxiv, sent for publication, currently under review: X. Cao et al, arXiv:2304.08362 [physics.ins-det].

Detector

A 20 cm thick lead shield is placed around the detector to stop the γ rays

Inner Copper Shield

- Low-radiation oxygen-free copper
- 12 cm thick

Field Cage

- POM insulator layer + POM supporting structure + FPCB
- Finished with an initial design, a 30cm-diameter prototype is made and being tested

Gas System

- A cold trap for SeF₆ storing
- A tank for SeF₆ storage, in case of emergency
- \bullet Negative pressure room with gas monitor & SeF6 reactor
- Test with SF₆ gas before filling SeF₆ each time

γ Background

- γ from natural radioactivity (mostly ²³⁸U).
- Using a 20 cm lead shield can be reduced down to \sim 0.4 events/year (\sim 1.4 \times 10⁻⁴evts/kg·keV·yr)
- Additional shielding would not decrease it further, since it comes mostly from radioactive contamination in the detector
- No topological cuts considered so far!

D.R. Nygren et al., JINST 13 (2018) 03, P03015

Source	Evts/yr	10 ⁵ Evts/(keV kg yr)
Walls	0.004	0.12
Lead	0.003	0.09
HDPE	0.005	0.16
SSV	0.026	0.86
ICS	0.050	1.67
POM	0.330	10.99
Total	0.42	13.9

X. Cao et al, arXiv:2304.08362 [physics.ins-det]

Neutron Background

Two possible ways neutrons can provide background

- \bullet Create unstable isotopes in the fiducial volume, β decay \Rightarrow background
- Be absorbed inside the detector, γ 's will be emitted This will be the dominant contribution to the neutron background, however sub-dominant with respect to γ . HDPE needed to stop neutrons: filling the space between lead and SSV + 30 cm external shield \Rightarrow 0.03 events/year

Q. Wang, Z. Huang, P, Hu and EC, arXiv:2307.12785 [physics.ins-det]

Other Sources of Background & Sensitivity

- Due to slow drift velocity of ions, pile-up backgrounds could be an issue

 Considering adding scintillation light read-out with silicon PM at the HV end
- \bullet Cosmic-generated 56 Co, ROI background ${\sim}3400/{\rm yr},$ half-life 77 d, need ${\sim}3$ years to cool down underground

Plot from B. Jones, "Review of Neutrinoless Double Beta Decay Searches", talk given at NDM22

0.5 background evts/yr w/o topological cuts \Rightarrow Assuming same efficacy as in NEXT for topological cuts \sim 0.05 evts/yr \Rightarrow Effectively, 0-background experiment \Rightarrow 3 \times 10 $^{25}(3\times10^{26})$ yr sensitivity with nat (enriched) Se (5 years run) \Rightarrow 4.3 \Rightarrow 4.3

Summary & Future Plan

- N ν DEx concept combines advantages from the high Q-value of 82 Se and TPC's ability to see event topology, using novel topmetal sensor technology.
- N ν DEx-100 is being built.
- $3 \times 10^{25} (3 \times 10^{26})$ yr sensitivity with nat (enriched) Se (5 years run)
- Very low background index, very good prospects for scalability
 Plan:
 - 2023: Completed CDR, study of topmetal sensors using radioactive sources (in progress)
 - 2024: Move to CJPL, noise reduced to 45 e⁻
 - 2025: assembling the whole system, begin data-taking
 - 2026: First Results

More than 30 people from 8 institutes in China; colleagues from all around the world are welcome to join!

Backup Slides

Backup Slides

γ Background: Radioactive Contamination

Values of radioactivity assumed in the simulations for different part of the geometry (for the materials of the detector, NEXT values were used)

Material	Subsystem	²³⁸ U Activity (mBq/kg)
Concrete	Experimental hall	$6.8 \times 10^{3}[1]$
Lead	External shielding	0.37 [2]
HDPE	External shielding	0.23 [2]
Steel	Pressure vessel	1.9 [2]
Copper	Inner copper shielding	0.012[2]
POM	Field cage	0.23[2]

[1] H. Ma et al., "In-situ gamma-ray background measurements for next generation CDEX experiment in the China Jinping Underground Laboratory.", Astropart. Phys., 128:102560, 2021.

[2] V. Alvarez *et al.*," NEXT-100 Technical Design Report (TDR): Executive Summary" NEXT-TDR, JINST,6237:T06001, 2012.

γ lines

- ullet Main contribution to γ flux from $^{238}{
 m U}$ and $^{232}{
 m Th}$ decays
- Due to the high Q-value, we are above the 2.614 MeV line from $^{232}{\rm Th}$ decay chain ($^{208}{\rm TI})$ \Rightarrow γ background considerably reduced
- Main contribution from ²³⁸U decay chain (²¹⁴Bi)

Instead of simulating the full decay chain, we took the γ lines information from the ENDF/B-VIII.0 database and wrote a code that create γ 's according to that distribution

 γ lines for ²³⁸U and ²³²Th from ENDF/B-VIII.0 database

16/19

Neutron Spectrum

We used the neutron spectrum reported in Q.D. Hu et al., Nucl.Instrum.Meth.A 859 (2017) 37-40

Total neutron flux: $(2.69 \pm 1.02) \times 10^{-5} cm^{-2} s^{-1}$

Emilio Ciuffoli NvDEx

Cosmogenic Activation

- Cosmogenic muons can activate nuclei in the material of the detector on surface
- 56 Co is the most dangerous isotopes, after exposure in Lanzhou, estimated background \sim 3400 events/year.
- $\bullet \sim$ 3 years of cooling down underground required for the background to be less than γ 's
- Other isotopes with long enough lifetime have Q-value<3 MeV

isotope	Q (MeV)	T _{1/2}
⁵⁴ Mn	1.4	312d
⁵⁶ Co	4.6	77d
⁵⁷ Co	0.8	272d
⁵⁸ Co	2.3	71d
⁶⁰ Co	2.8	5.3yr

Energy Resolution

- Q-value for $^{82}{\rm Se}{=}2.998$ MeV, Ionization energy $W_{SeF6}\simeq 32$ eV, \Rightarrow $N_e=2.36\times 10^4$
- Fano Factor ⇒ lower bound to the energy resolution (cannot get better than this). For SeF₆, at 3 MeV:

$$\sigma/E = 0.142\%$$
 FWHM/E = $2\sigma\sqrt{\text{Log}[4]} = 0.34\%$

- Energy resolution is worsened by the presence of noise, etc...
- Other factors to be taken into account: changing focusing efficiency (need to reach $\sim \! 100\%$), sensor temperature variation, etc...