

Detecting and studying three-flavor neutrinos with FASER at LHC

August 28th, 2023

Yosuke Takubo (KEK)

On behalf of FASER collaboration

FASER

- <u>FASER</u> is an experiment to search for new long-lived particles and measure cross-sections of neutrinos, that are produced in pp collisions at ATLAS Interaction Point (IP), starting in 2022.
- The detector is installed 480 m downstream of ATLAS IP (TI12).
- FASER utilizes high cross-section of pp interactions at forward region.

- FASERv (neutrino detector)
 - > Scintillator veto
 - > 730 layers of an emulsion film and
 1.1 mm tungsten plate (1.1 t, 220 X₀)
 - Silicon tracker station (IFT: Inter Face Tracker)
- Scintillator veto/trigger
- Decay volume with 1.5m/0.57T
- Spectrometer with 2m/0.57T
 - > 3 silicon tracker stations
- EM calorimeter

FASER detector

Charged current interactions at FASERv

- FASERv will measure neutrino cross-sections at TeV region which is uncovered by existing experiments. Expected # of CC int. with 250 fb⁻¹ @FASERv
- All neutrino flavors in Charged Current (CC) interactions can be identified including τ-neutrino, thanks to excellent position resolution of the emulsion detector.

Generators		$FASER\nu$			
light hadrons	heavy hadrons	$\nu_e + \bar{\nu}_e$	$\nu_{\tau} + \bar{\nu}_{\tau}$		
SIBYLL	SIBYLL	1501	7971	24.5	
DPMJET	DPMJET	5761	11813	161	
EPOSLHC	Pythia8 (Hard)	2521	9841	57	
QGSJET	Pythia8 (Soft)	1616	8918	26.8	
Combination (all)		2850^{+2910}_{-1348}	9636^{+2176}_{-1663}	67.5^{+94}_{-43}	
Combination (w/o DPMJET)		1880^{+641}_{-378}	8910^{+930}_{-938}	$36^{+20.8}_{-11.5}$	

Forward charm production at LHC

- Atmospheric neutrinos from charm decays (prompt neutrino) could be an important background for astrophysics neutrino observations.
 > Only upper limit was given by IceCube.
- $gg \rightarrow cc$ is the leading order for cham production in perturbative QCD.
- Proton-proton collision at LHC corresponds to ~100 PeV proton interaction with fixed target.

Measurement of production cross-section of heavy mesons at LHC can provide constraint on the prompt flux (current syst. error is O(1)).

Neutrino detection at FASER

- Tungsten plates in the emulsion detector work as the neutrino target.
 > A total of 1.1 tons (220 X₀)
- 3 neutrino flavors can be identified by using event topologies in the emulsion detector.
 - > The emulsion films will be replaced every 30-50 fb⁻¹.
- v_{μ} and \overline{v}_{μ} can be identified separately with the spectrometer that was used for the first observation of v_{μ} produced at LHC.

Backgrounds in neutrino measurement

- High energy muons coming from the pp interactions traverse FASER detector with a flux of 0.5 Hz/cm^2 .
- The muons rarely produce neutral hadrons in the upstream concrete and inside the detector, that can mimic neutrino interaction vertices.

Energy distributions of v_e/v_μ and

FASER Preliminary

neutral hadrons

• Most of the produced neutral hadrons are low energy and can be eliminated with momentum/energy cut.

7

ν_{μ} detection with electric detector (1)

- The first detection of collider neutrinos was performed with the electric detectors in FASER by using data taken in 2022 (35.4 ± 0.8) fb⁻¹.
- All events triggered by any of the scintillators downstream of FASERv are used.
 - > FASERv scintillator station eliminates charged particles coming from the upstream.
 - > Signal is required to veto scintillator after Pb wall and calorimeter.
- The tracker detects muons created in v_{μ} CC interactions with the tungsten plates in the emulsion detector.

ν_{μ} detection with electric detector (2)

- $n_{\nu} = 153^{+12}_{-13}(\text{stat})^{+2}_{-2}(\text{bkg})$
- Expected BG: 0.11±0.06 for neutral hadron, 0.08±1.83 for geometrical BG.
- Significance is 16σ over BG only hypothesis
- The results were published in [<u>PRL 131,</u> <u>031801 (2023)</u>].

$v_{e/\mu}$ measurement with FASERv (1)

- 250 out of 730 films of 2022 2nd module in FASERv were analyzed.
 - > Corresponding to 9.5 fb⁻¹ taken during July 26th to September 13th.
 - > 150 films for the vertex reconstruction and 100 films for momentum/energy measurements.
- The v_e and v_{μ} CC interaction candidates are identified with a highenergy selection ($p_{\ell} > 200 \text{ GeV}$).
- The sum of v_e/\overline{v}_e and that of $v_{\mu}/\overline{v}_{\mu}$ are measured.

$v_{e/\mu}$ measurement with FASERv (2)

- Detected vertices before the high-energy selection are dominated by neutral hadron interactions.
- $\begin{array}{c} \text{MC exp.: 216 vertices} \\ \hline K_{s/L}, n/\overline{n}, \Lambda/\overline{\Lambda} \text{ interactions} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{Data: 133 vertices} \\ 140 \text{ vertices -7 v CC candidates} \\ \hline \end{array} \\ \end{array}$
- The event rate agrees with the expectation within 50% uncertainty.
- No significant difference in the shape of the distributions.
- MC samples of individual neutral hadrons are used for BG estimation (equivalent to 20 times of the data).
 > 6 ν_μ BG (p > 200 GeV)
 > 0 ν_e BG (E_e > 200 GeV)

$v_{e/\mu}$ measurement with FASERv (3)

FASERv Preliminary

	Expected background			Observed	
	Hadron int.	ν NC int.	Expected signal	Observed	
ν_e CC	0.002 ± 0.002	-	1.2 +4.0 -0.6	3	$p = 1.6 \times 10^{-7} \ (5.1\sigma)$
ν_{μ} CC	0.32 ± 0.16	0.19±0.15	4.4 +4.2 -1.4	4	$p = 5.2 \times 10^{-3} (2.5\sigma)$

- The first direct observation of electron-neutrino CC interactions at a beam collider.
- The performance of detection will be improved in future analysis using a longer range for μ ID.

$v_{e/\mu}$ measurement with FASERv (4)

- 11 tracks at the vertex, 615 μm inside tungsten
- *e*-like track from vertex
- Single track for $2 X_0$
- Shower max at $7.8 X_0$
- 175° between *e*-like track and others
- $\theta_e = 11 \text{ mrad w.r.t. beam}$

$v_{e/\mu}$ measurement with FASERv (5)

Beam view

FASERv Preliminary

Summary & Conclusions

- FASER is an experiment to search for new long-lived particles and measure cross-sections of neutrinos, starting data-taking in 2022.
- FASER was succeeded in the first observation of neutrinos (ν_{μ}) that are produced at a collider experiment by using active electric detectors.
- The analysis was performed for data stored in a part of FASERv, that were taken in 2022 (9.5 fb⁻¹).
- FASERv achieved the first observation of electron-neutrino CC interactions at the LHC at the highest energy ever observed by accelerator-based experiments.
- The cross-section of three neutrino flavors will be measured with additional data, improving the analysis method.
- Upgrade of FASER main detector and FASERv is being discussed as a part of the proposed [Forward Physics Facility].

Charm/strange PDF

- There is a controversial prediction in which an additional charm component exists in a proton (so-called intrinsic charm).
- It only affects the forward charm production $(cg \rightarrow cg)$ in pp collisions, to which v_e/v_τ energy spectrum in FASERv is sensitive.

 μ^{-}

 W^+

 V_{cs}

s (+d)

• D meson production in CC v_{μ} interaction is sensitive to strange PDF in a proton where tension exists between ATLAS and predictions.

Theoretical interest in QCD

- FASERv can explore charm production (gg \rightarrow cc) at Q ~ 2 GeV with x ~ 10⁻⁷, where gluon saturation by color glass condensation appears.
- Measurement of muon/neutrino flux and energy spectrum constrains production of primary hadrons (mainly pions and kaons).
 - The results can be used to validate/improve cosmic ray MC, especially to understand muon excess.
 Muon excess from prediction

Astrophysics neutrino & prompt flux at IceCube

- Uncertainty on conventional atmospheric neutrino flux (Φ_{conv}) is ~30% and absorbs any uncertainty which influences the global flux norm..
- The cosmic ray spectrum parameterized as $\Delta \gamma_{CR}$ also affects the expectation of Φ_{conv} and prompt flux (Φ_{prompt}).
- Φ_{prompt} is a free parameter in the fitting and currently zero consistent.

19

• Astrophysical parameters (Φ_{astoro} , γ_{astro}) are found to be almost independent from Φ_{prompt} .

Parameter	Best-Fit	68% C.L.
$\Phi_{ m astro}$	0.90	0.62 - 1.20
$\gamma_{ m astro}$	2.13	2.00 - 2.26
Φ_{prompt}	0.00	0.00 - 0.19

Muon excess in extensive air showers

- Excess of muons with respect to the prediction (8σ) are observed in cosmic ray experiments.
- The hadronic interaction models used for the prediction were developed by using results of measurement in LHC and SPS.
- Measurement of muon/neutrino flux at FASER/FASERv will provide feedback to the interaction model.

Gluon saturation in proton (2)

From F. Kling's presentation

Cham-associated neutrino events

- FASERv can measure neutrino interactions associated with D-mesons in the final states.
- 10-20% of neutrino interaction at FASERv is accompanied with Dmesons.
 Fraction of neutrino events
- The emulsion detector can identify Dmesons, measuring tracks and their decay products.

22

Beauty-associated neutrino events (1)

- Results in measurements in of $B \rightarrow D^* \ell \nu$, $B \rightarrow K^* \ell \ell$ and $B^+ \rightarrow K^+ \ell \ell$ suggest lepton universality violation.
- The neutrino interactions in FASERv are the same as them, exchanging the internal/external lines in Feynman diagrams.

 $\mathcal{R}(D) = \frac{\mathcal{B}(B \to D\tau \nu_{\tau})}{\mathcal{B}(B \to D\ell \nu_{\ell})},$ $\mathcal{R}(D^*) = \frac{\mathcal{B}(B \to D^*\tau \nu_{\tau})}{\mathcal{B}(B \to D^*\ell \nu_{\ell})}$

Beauty-associated neutrino events (2)

- Since cross-section of these processes are suppressed by a factor of $O(V_{ub}^{2})\sim 10^{-5}$, beauty-associated neutrino events cannot be observed at FASERv in Run3 in SM.
 - > Expected number of the events: O(0.1)
- But, the observation means discovery of new physics.
- In addition, lepton universality violation in the third generation can be investigated with sensitivity to v_{τ} .

Sterile neutrino oscillation

- SM excludes possibility of neutrino oscillation in FASER condition.
 - \longrightarrow If appearance or disappearance events are observed, it indicates existence of sterile neutrino.
- For ν_e, FASERν has sensitivity to 2.7σ discovery region with Gallium detector [arXiv:1006.3244].
 Expected sensitivity to neutrino oscillation

First neutrino candidates from LHC (1)

- The pilot runs took place for neutrino detection and flux measurement of charged particles at tunnels TI12 and TI18 in 2018.
 - > TI18 is the tunnel at the same distance from ATLAS IP as TI12 (FASER site) but opposite side.
- Neutrino detection was performed with a 30 kg emulsion detector, collecting 12.5 fb⁻¹ of data (10 kg are used in the analysis).

26

First neutrino candidates from LHC (2)

• 18 candidates of the neutral vertex were detected.

Neutrino event candidates

27

- They are the first candidates of the neutrino interactions at a collider.
- 2.7σ excess of neutrino-like signal above muon-induced background is measured with a multivariate analysis.
- The results were published in [PRD 104, L091101 (2021)].

BDT outputs of observed neutral vertices

FASERv performance (selection)

FASERv performance (classification)

FASERv performance (hit position)

Position resolutions (after ~100 plates reconstruction)

FASERv performance (momentum)

Momentum measurement performance is validated in the data using split tracks, confirming the MC results.

FASERv performance (energy)

Number of segments (sum 7 films around shower maximum) are used to estimate electron energy. $\sim 25\% \frac{\Delta E}{E}$ resolution

FASERv performance (efficiency v_e)

Selection	$\nu_e {\sf CC}$	ν NC	K_L	n	Λ
	1.000	1.000	1.000	1.000	1.000
Vertex reconstruction	0.516	0.336	0.813	0.803	0.753
E>200 GeV	0.340	0.001	0.000	0.000	0.000
E>200 GeV, tan $ heta>$ 0.005	0.270	0.001	0.000	0.000	0.000
$E>\!\!200$ GeV, ${\rm tan}\theta>\!\!0.005.~\Delta\phi\!\!>\!\!90{\rm deg}$	0.226	0.000	0.000	0.000	0.000

FASERv performance (efficiency v_{μ})

Selection	$ u_{\mu}$ CC	ν NC	K_L	n	Λ
	1.000	1.000	1.000	1.000	1.000
Vertex reconstruction	0.446	0.336	0.813	0.803	0.753
$p>\!\!200~{\rm GeV}$	0.284	0.071	0.028	0.026	0.018
$p>\!\!200~{\rm GeV}$, tan $\theta>\!\!0.005$	0.236	0.051	0.007	0.013	0.007
$p>\!\!200~{\rm GeV},\tan\!\theta>\!\!0.005.~\Delta\phi\!\!>\!\!90{\rm deg}$	0.192	0.004	0.002	0.006	0.004

v_e candidates

ν_{μ} candidates

Acknowledgements

• FASER is supported by:

- We also thank:
 - LHC for the excellent performance
 - ATLAS Collaboration for providing luminosity information
 - ATLAS SCT Collaboration for spare tracker modules
 - ATLAS for the use of their ATHENA software framework
 - LHCb Collaboration for spare ECAL modules
 - CERN FLUKA team for the background simulation
 - CERN PBC and technical infrastructure groups for the excellent support