

XVIII International Conference on Topics in Astroparticle and Underground Physics 2023

Neutrino nonradiative decay and the diffuse supernova neutrino background

PILAR IVÁÑEZ BALLESTEROS (SHE/HER)

SUPERVISED BY: DR. M. CRISTINA VOLPE

APC – UNIVERSITÉ PARIS CITÉ

Outline

P. Iváñez-Ballesteros and M. C. Volpe, Phys. Rev. D 107, 023017 (2023) arXiv:2209.12465

1. DSNB FLUX WITHOUT DECAY:

- Emission from a single SN
- Fraction of BH-forming collapses

2. NEUTRINO NONRADIATIVE DECAY: three-flavour description

- Normal Ordering: Quasi-Degenerate (QD) and Strongly Hierarchical (SH) case
- Inverted Ordering

3. PREDICTIONS OF THE DSNB WITH/WITHOUT DECAY

SK-Gd, HK, JUNO, DUNE

General context

- Most of the gravitational binding energy ($\sim 10^{53}$ erg) released as neutrinos (99 %)
- These neutrinos provide information about the SNe explosion dynamics, neutrino properties, ...

Core-Collapse Supernovae (CCSNe) are <u>very rare</u> in our galaxy (1-3 per century)

SN 1987A: first detection of this neutrino burst. [Hirata *et al.*, 1987] [Bionta *et al.*, 1987] [Alekseyev *et al.*, 1988]

> Evolution of SN 1987A. Hubble Space Telescope https://www.esa.int/About_Us/ESAC/The_evolution_of_SN_1987A

The Diffuse Supernova Neutrino Background (DSNB)

DSNB: all neutrinos and antineutrinos emitted by <u>all past core collapses in</u> <u>the observable Universe</u>.

see e.g. [Beacom, 2010], [Priya and Lunardini, 2017], [Møller et al., 2018], [de Gouvêa et al., 2020], ...

$$\phi_{\nu}(E) = \int_{0}^{z_{max}} \frac{dz}{H(z)} \int_{8 M_{\odot}}^{125 M_{\odot}} dM \, \dot{R}_{SN}(z, M) F_{\nu}(E', M)$$

$$E' = E(1+z)$$

- DSNB flux depends on:
 - $\Box \operatorname{Cosmology} \to H(z)$

□ Astrophysics → Supernova rate $R_{SN} \propto$ Star Formation Rate (SFR)

 \Box Neutrino properties \rightarrow mass ordering, matter effects, new properties...

GOAL

Investigate what one might learn about <u>neutrino decay</u> through the <u>upcoming observation of the</u> <u>DSNB</u> when considering a <u>detailed astrophysical model</u> in a <u>three-flavour</u> neutrino framework.

Best-fit values associated to different models, the expected sensitivities for the DSNB fluxes and the 90% CL upper limits for the SK-I-II-III-IV data. [Abe *et al.*, 2021]

Neutrino emission from a single collapse: $F_{\nu}(E, M)$

• Neutrino flux <u>at the neutrinosphere</u> can be parametrised by: [Keil et al., 2003]

$$F_{\nu}^{0}(E) = \frac{L_{\nu}}{\langle E_{\nu} \rangle} \frac{(\alpha_{\nu} + 1)^{\alpha_{\nu} + 1}}{\langle E_{\nu} \rangle \Gamma(\alpha_{\nu} + 1)} \left(\frac{E}{\langle E_{\nu} \rangle}\right)^{\alpha_{\nu}} \exp\left[-(\alpha_{\nu} + 1)\frac{E}{\langle E_{\nu} \rangle}\right]; \ \nu = \nu_{e}, \overline{\nu}_{e}, \nu_{x}$$

 L_{ν} : luminosity (~ 10⁵² erg) $\langle E_{\nu} \rangle$: average energy (~ 12 - 18 MeV)

 α_{ν} : pinching parameter, function of $\langle E_{\nu} \rangle$ and $\langle E_{\nu}^2 \rangle$ (~ 2 – 3)

[Wolfenstein, 1978] • Mikheev-Smirnov-Wolfenstein (MSW) effect: [Mikheev and Smirnov, 1986] Describes the <u>flavour transformations</u> due to the ν -matter interactions. We have assumed to be <u>adiabatic</u> $\rightarrow F_{\overline{\nu}_l} = F_{\overline{\nu}_e}^0$; $F_{\overline{\nu}_i} = F_{\overline{\nu}_h} = F_{\nu_x}^0$ Flavour conversion in SNe still under study: shock wave effects, $\nu - \nu$ interactions... see e.g. the review Volpe (2023)

Contribution from Black Hole-Forming Collapses

BH-forming collapses (BHFC) emit a hotter neutrino spectrum than NS-forming collapses (NSFC).

Fraction of BH, f_{BH} : fraction of "failed" collapses, i.e. they end up forming a BH.

To model the DSNB flux, we used templates from 1D SN simulations from the Garching group. [Hudepohl, 2013]

DSNB flux on Earth in absence of ν decay

Flux of $\bar{\nu}_e$ on Earth for different f_{BH} in absence of decay. The band shows the uncertainty of the SNR normalisation.

$$\phi_{\nu}(E) = \int_{0}^{z_{max}} \frac{dz}{H(z)} \int_{8 M_{\odot}}^{125 M_{\odot}} dM \, \dot{R}_{SN}(z, M) F_{\nu}(E', M)$$
$$E' = E(1+z)$$

Results for the integrated flux in $\text{cm}^{-2}\text{s}^{-1}$ for the fiducial case ($f_{BH} = 0.21$) and the most optimistic case ($f_{BH} = 0.41$) in brackets:

	ΝΟ	Ю	UPPER LIMITS
$\overline{oldsymbol{ u}}_{e}$ ($E_{v} > 17.3 \; { m MeV}$)	0.77 ± 0.30 [1.02 \pm 0.41]	0.63 ± 0.25 [0.75 ± 0.3] [Abe	2.6 (SK) e et al., 2021]
ν _e (22.9 < E < 36.9 MeV)	0.20 ± 0.08 [0.24 ± 0.09]	0.18 ± 0.08 [0.23 ± 0.09] [Aharmin	19 (SNO) 1 et al., 2020]

Neutrino nonradiative decay

 $\nu_j \longrightarrow \nu_i (\overline{\nu}_i) + X$

where $m_i > m_i$ and X is a very light (pseudo)scalar particle (e.g. Majoron).

Mass ordering cases

Decay patterns

TAUP 2023: 28/08 - 01/09/2023

Detection of the DSNB

- Detection of $\bar{\nu}_e$ flux \rightarrow **Inverse Beta Decay** (IBD)
 - $\bar{\nu}_e + p \rightarrow n + e^+$
 - Super-Kamiokande + Gd, Hyper-Kamiokande, JUNO
 - > Backgrounds: reactor $\overline{\nu}_e$ (low energies) and atmospheric ν (high energies)
- Detection of v_e flux \rightarrow **neutrino absorption in** ⁴⁰Ar

 $\nu_e + {}^{40} Ar \rightarrow {}^{40} K^* + e^-$

- Deep Underground Neutrino Experiment (DUNE)
- > Backgrounds: solar neutrinos (low energies) and atmospheric v_e (high energies)

DUNE (40 kton)

Predictions for the DSNB: Normal Ordering

* Results obtained for our fiducial case, $f_{BH} = 0.21$. The bands show the uncertainty of the SNR normalisation.

Predictions for the DSNB: Inverted Ordering

* Results obtained for our fiducial case, $f_{BH} = 0.21$. The bands show the uncertainty of the SNR normalisation.

Main results and conclusions

First investigation of nonradiative neutrino decay using a $\frac{3\nu}{1000}$ framework and including the <u>dependence on</u> the <u>SN progenitors</u> and the <u>uncertainty from the SN rate</u>.

Prediction for the number of events at different experiments: **SK-Gd, HK, JUNO and DUNE**

MAIN RESULTS:

P. Iváñez-Ballesteros and M.C. Volpe, PRD107 (2023) 023017, arXiv:2209.12465 SN1987A and neutrino nonradiative decay, P. Iváñez-Ballesteros and M.C. Volpe (2023), arXiv:2307.03549

Thank you for your attention

BACK UP SLIDES

TAUP 2023: 28/08 - 01/09/2023

Number of events

 N_t (10³³) ϵ (%) (years)

57.5

73.75

25

40

50

86

1.5

1.5

12.5

12.5

1.21

0.602

SK-Gd

SK-Gd

HK-Gd

JUNO

DUNE

ΗK

Properties of the experiments considered and total number of events in the absence of decay in NO (IO).

Time

2

8

20

20

20

20

	(17
	20
Number of events associated with inverse-beta decay in	
SK-Gd, HK and JUNO as well as with $v_e - {}^{40}$ Ar scattering	(11
in DUNE. The predicted number of events are given in the	20
third to fifth columns for the different τ/m considered. The	DU
values are given for NO, QD; for NO, SH (in brackets) and	(19
for IO (in parenthesis).	20

DSNB window

(MeV)

(12.8, 30.8)

(17.3, 31.3)

(11.3, 33.3)

(19, 31)

(12.8, 30.8) 12 $(10) \bar{\nu}_e$

(17.3, 31.3) 76 (64) $\bar{\nu}_e$

DSNB

events

2 (2) $\bar{\nu}_{e}$

48 (40) $\bar{\nu}_{e}$

20 (17) $\bar{\nu}_{e}$

12 (11) ν_e

		Number of events				
Experiment	No decay	$(\tau/m)_{\rm long}$	$(\tau/m)_{\rm medium}$	$(\tau/m)_{\rm short}$		
SK-Gd	2	2	3	4		
(12.8–30.8)	(2)	[2]	[2]	[2]		
2+8 years		(2)	(1)	(0)		
	12	13	17	22		
	(10)	[12]	[12]	[11]		
		(10)	(7)	(1)		
HK	48	49	61	84		
(17.3 - 31.3)	(40)	[47]	[45]	[43]		
20 years		(39)	(29)	(6)		
HK-Gd	76	79	98	135		
(17.3–31.3)	(64)	[73]	[73]	[69]		
20 years		(62)	(46)	(9)		
JUNO	20	21	28	37		
(11.3 - 33.3)	(17)	[20]	[19]	[19]		
20 years		(16)	(10)	(2)		
DUNE	12	12	15	20		
(19–31)	(11)	[11]	[11]	[10]		
20 years		(10)	(8)	(2)		

$$N_{\alpha} = \epsilon N_t \int dE_{\nu} \phi_{\nu_{\alpha}}(E_{\nu}) \sigma(E_{\nu})$$

DSNB flux with ν decay: results for NO, QD case

DSNB flux with ν decay: results for NO, QD case

DSNB flux with ν decay: results for NO, QD case

DSNB v_e and v_x flux on Earth for a decay scenario with NO and QD masses. We consider the fiducial case, $f_{BH} = 0.21$. The bands show the uncertainty of the SNR normalisation.

DSNB flux with ν decay: results for NO, SH case

Decay pattern for NO and SH masses. 10 $\bar{\nu}_3$ ν_3 MeV s^{-1} 0.1 u_2 $\overline{\nu}_{2}$ (cm) $\bar{\nu}_{1}$ ν_1 $\stackrel{\rho_{\bar{L}}}{0.01} \quad \stackrel{\rho_{\bar{L}}}{\phi}$ $au_3/m_3= au_2/m_2= au/m$ 0.001• $B(\nu_3 \rightarrow \nu_i) = B(\nu_3 \rightarrow \bar{\nu}_i) = \frac{1}{4}$ • $B(\nu_2 \rightarrow \nu_1) = B(\nu_2 \rightarrow \bar{\nu}_1) = \frac{1}{2}$ 10 20 25155 Energy (MeV) DSNB $\bar{\nu}_e$ flux on Earth for a decay scenario with NO and SH masses. We consider the fiducial case, $f_{BH} = 0.21$. The bands show the uncertainty

of the SNR normalisation.

40

No decay

30

35

 $--- \tau/m = 10^{11} \text{ s/eV}$ $- \tau/m = 10^{10} \text{ s/eV}$ $\dots \tau / m = 10^9 \text{ s/eV}$

DSNB flux with ν decay: results for NO, SH case

DSNB v_e and v_x flux on Earth for a decay scenario with NO and SH masses. We consider the fiducial case, $f_{BH} = 0.21$. The bands show the uncertainty of the SNR normalisation.

DSNB flux with ν decay: results for IO case

DSNB flux with ν decay: results for IO case

DSNB flux with ν decay: results for IO

DSNB v_e and v_x flux on Earth for a decay scenario with IO. We consider the fiducial case, $f_{BH} = 0.21$. The bands show the uncertainty of the SNR normalisation.