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Neutrino Oscillations (Leptonic CP-Violation)
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Important for CPV in leptonic sector

θ13 = 1° θ13= 8.8°

@ 1st oscillation max.

CP-interference 
dominates

@ 2nd oscillation max.

Solar term 
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@ 1st oscillation max.
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θ13 plays a significant role in evaluating the 
performance when planning “future” long 

baseline neutrino experiments
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The European Spallation Source (ESS) 
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●  The ESS facility is under construction in Lund, Sweden

●  The most powerful proton linear accelerator ever built, with beam kinetic energy of

 2 GeV and power of 5 MW

●  The world’s most powerful neutron source (~ 40x1015 n·cm-2·s-1)

● 14 Hz repetition rate & 10¹⁵ protons/pulse

• almost pure νμ beam

• small νe contamination which could be used to 
measure νe cross-sections in a near detector

- Considered baselines to cover 2nd oscillation max.
- 360 km is the chosen baseline
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The European Spallation Source Neutrino Superbeam (ESS𝝂SB) 
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● Has the benefit of the powerful proton beam of the ESS LINAC to 

produce intense neutrino beam.

● The neutrino source-to-detector distance, the baseline, is set at the 

second oscillation maximum.

● Aims at searching and measuring, with precision, for CP-violation in the 

leptonic sector, at 5σ significance level in more than 70% of the leptonic 

Dirac CP violating phase range.

A schematic overview of the main work 
packages (WP) within the ESSνSB project 
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Upgrades to the ESS site 
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Upgrade of the accelerator
- 14 Hz to 28 Hz

- use H- instead of protons in 
ESSnuSB cycles

- increase kinetic energy to 2.5 GeV 

Build an accumulator ring
- shorten ESS pulses from 2.86 
ms to ≈ 1 μs

Build a neutrino target station
- 4 identical targets and horns
- need switchyard

Build a near detector site
- water Cherenkov detector
- fine grained scintillator
- emulsion detector

Build a neutrino target station
- 4 identical targets and horns
- need switchyard
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ESS𝝂SB near and far detectors
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6

NINJA-like water-emulsion 
detector (1 t fiducial)

Super-FGD like detector (1 t fiducial)

Near Water Cherenkov 
detector (0.77 kt fiducial)

ν beam

Near Detector Far Detector

Design
• Memphis-like Water Cherenkov 

detector
• 2 x 270 kt fiducial volume 

(~20xSuperK)
• Readout: 2 x 38k 20” PMTs
    40% optical coverage

75 m

75 m
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ESS𝝂SB: Physics Performances
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Updated physics performance of the ESS𝜈SB experiment

Sensitivity for δCP = ± π/2:
10 σ (540 km)
13 σ (360 km)

High precision of δCP measurement
70%  δCP  coverage @ 5 σ:

11 years (540 km)
8 years (360 km)
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ESS𝝂SB systematic errors
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● The influence on δCP of the systematic errors will be close to three times smaller as compared to other experiments
● Even so, it is of vital importance to measure the neutrino cross-sections in this energy range as precisely as possible for 

precise measurements of the δCP, especially since data on neutrino cross-sections in the neutrino energy range of ESSνSB, 
0.2-0.6 GeV, is currently very scarce
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Elastic

Quasi-Elastic (QE)

Resonant (RES)

Deep inelastic (DIS)

Missing measurements at the 
ESSνSB region: below 500 MeV

From eV to EeV: Neutrino cross 
sections across energy scales, Rev. 
Mod. Phys. 84, 1307 – Published 24 
September 2012

neutrinos antineutrinos
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ESS𝝂SB+
A synergic facility based in Europe
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 ESS𝝂SB+ Superbeam
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ESS𝜈SB  (5MW) ESS𝜈SB+  (1.25MW)

1.  Design a transfer line from the ESS𝜈SB accumulator ring to the target

2.  Design a special target facility that depends on one horn-target system

3.  Design a pion extraction and deflection system

4.  Design an injection scheme for the extracted pions to the racetrack     

.storage ring, where the pions will decay to muons

5.  Design a storage ring for the low energy nuSTROM (for cross section 

         measurements and sterile neutrino searches) 

6.  Design a Monitored Neutrino Beam (low energy ENUBET

         for cross section measurements)

7.  Optimize the performance of the ESSνSB detectors

Cross-section measurements with:

• Low Energy nuSTORM: π⟶ μ ⟶ e + νμ + νe

• Low Energy ENUBET: π ⟶ μ + νμ
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Horn Parameters for study
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To obtain a streamlined pion flux the following horn parameters are altered and studied:

1. L1        7.    R4
2. L2        8.    Rdt
3. L3        9.    ztg
4. L4
5. R2
6. R3

R4
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4.

Genetic Algorithm 

28.08.2023 Vidhya Hariharan, TAUP 2023

      

       

       Workflow of Genetic Algorithm
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Population:  Horn parameter list
            A1:   [[60, 15, 80, 78, 51, 68, 87, 2, 26], 
            A2:    [34, 90, 80, 97, 25, 89, 99, 83, 18], 
            A3:    [10, 53, 56, 25, 92, 3, 10, 51, 86]]

Fitness: Number of π+
               15162, 15005, 15495

Fit Individuals: Individuals with highest π+        
                  A1: [[ 60, 15, 80, 78, 51, 68, 87, 2, 26], 
                  A3:  [10, 53, 56, 25, 92, 3, 10, 51, 86]]

Crossed Over Probability: 0.8882167797500229
    Crossed Offsprings A5: ([60, 53, 56, 25, 51, 68, 87, 51, 86], 
                                    A6:   [10, 15, 80, 78, 92, 3, 10, 2, 26])
                             Fitness: (15162.0,) (15495.0,)

Mutation Probability: 0.235678014576
                Mutant A6: [10, 15, 80, 78, 92, 3, 10, 2, 26]
Mutated Offspring A7: ([10, 15, 80, 6, 92, 3, 10, 2, 26],)
                       Fitness: (15495.0,)

Generation 1 - Fit Individuals: A3(15495), 
                                                A6(15495.0), 
                                                A7(15495.0,)
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Pion distribution 

Focused 𝝅⁺ 10 m
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Conclusions
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● ESS can also become a neutrino facility, ESSνSB, already proved to have a very high 

      physics performance and potential.

● CPV: 5σ could be reached over 70% of δCP range by ESSνSB with large physics potential 

      with less than 8° precision.

● Precise neutrino cross-section measurements, sterile neutrino searches and muon studies.

● New application submitted and now approved, and the projected started from 1 Jan., 2023

● This facility offers great opportunity for the community and it is an ideal platform to house R&D activities 

and other neutrino and muon experiments
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Backup
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Comparison between the oscillation maxima

2nd oscillation max.
well covered by the ESS 
neutrino spectrum

1st oscillation max.
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Performance Comparison

DUNE

HyperK
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Timeline

18
2012: inception 
of the project

2016-2019: 
beginning of 
COST Action 
EuroNuNet

2018: beginning 
of ESSνSB 
Design Study 
(EU-H2020)

2022: End of 
ESSνSB Design 
Study, CDR and 
preliminary 
costing

2022-2026: 
Preparatory 
Phase, TDR

2026-2028: 
Preconstruction 
Phase, 
International 
Agreement

2028-2036: 
Construction of the 
facility and 
detectors, including 
commissioning

2037-: Data 
taking

Nucl. Phys. B 885 
(2014) 127

arxiv.org/abs/2206.01208

https://arxiv.org/abs/2206.01208
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Low Energy neutrino Stored Muon facility

The LEnuSTORM facility will take advantage of the extremely high intensity ESS proton beam to:

❖ Serve the future long-baseline ESSnuSB neutrino-oscillation program by providing definitive measurements 

   of (anti)νe and (anti)νμN scattering cross sections with percent-level precision;

❖ Allow searches for sterile neutrinos of exquisite sensitivity;

❖ Initiate the development of future muon accelerators (including studying 6D μ ionization cooling).

❖ The facility is unique, it will be capable of storing μ± beams with momentum of between 1 GeV/c and 6 GeV/c 

and a momentum spread of ±16%.

❖ At nuSTORM, the flavour composition of the beam and the neutrino-energy spectrum are both precisely known. 

❖ The storage-ring instrumentation will allow the neutrino flux to be determined to a precision of 1% or better. 

nuSTORM ( 3.8 GeV muons)
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Enhanced NeUtrino BEams from kaon tagging

Proposes a dedicated facility to measure νμ and νe cross-sections precisely using a combination of monitored, narrow-band 

neutrino beams at the GeV energy scale and by instrumenting the meson-decay tunnel with a segmented calorimeter. 

- The ENUBET approach is based on monitoring the production of large-angle positrons from K+ → π0e+νe (Ke3) decays in the 

decay tunnel. 

- In addition, ENUBET will monitor muons produced in kaon and pion decays, thus providing a precise measurement of the νμ 

flux. 

- Due to the optimization of the focusing-and-transport system of the momentum-selected narrow-band beam of the parent 

mesons, the Ke3 decay represents the main source of electron neutrinos. 

- Furthermore, the positron rate may be used to measure the νe flux directly. Consequently, the monitored νe beam will lower 

the uncertainties on the neutrino flux and flavour for a conventional beam from the current level of O(7%-10%) to ∼ 1%.

- Similar precision is expected for the νμ flux, with the bonus that the neutrino energy will be determined with a precision of ∼ 

10% at the single neutrino level by the “narrow-band off-axis technique”, i.e. using only the position of the νμ interaction 

vertex.


