

# The European Spallation Source neutrino Super Beam plus Project

XVIII International Conference on Topics in Astroparticle and Underground Physics 2023

28.08.2023 | Vidhya Thara Hariharan (on behalf of the ESSvSB+ collaboration)

Institut für Experimentalphysik, Universität Hamburg







### **Neutrino Oscillations (Leptonic CP-Violation)**



28.08.2023 Vidhya Hariharan, TAUP 2023

### The European Spallation Source (ESS)



- Considered baselines to cover 2<sup>nd</sup> oscillation max. - 360 km is the chosen baseline • almost pure v<sub>.,</sub> beam • small v<sub>e</sub> contamination which could be used to measure v cross-sections in a near detector Kristineberg D=1350 m L-1140 km SWEDEN FINLAND NORWAY Garpenberg L=540 km Kongsberg L=500 km Zinkgruvan L=360 km LATVIA DENMARK LITHUANIA POLAND GERMANY

#### The European Spallation Source Neutrino Superbeam (ESSvSB)



A schematic overview of the main work

packages (WP) within the ESSvSB project

- Has the benefit of the powerful proton beam of the ESS LINAC to produce intense neutrino beam.
- The neutrino source-to-detector distance, the baseline, is set at the second oscillation maximum.
- Aims at searching and measuring, with precision, for CP-violation in the leptonic sector, at 5σ significance level in more than 70% of the leptonic Dirac CP violating phase range.



physics

WP6

#### **Upgrades to the ESS site**



#### ESSvSB near and far detectors





### **ESSvSB:** Physics Performances

#### Updated physics performance of the ESSvSB experiment



Sensitivity for  $\delta_{CP} = \pm \pi/2$ : 10  $\sigma$  (540 km) 13  $\sigma$  (360 km)



70% δ<sub>CP</sub> coverage @ 5 σ: 11 years (540 km) 8 years (360 km)



High precision of  $\delta_{CP}$  measurement

28.08.2023 Vidhya Hariharan, TAUP 2023

#### ESSvSB systematic errors

- The influence on  $\delta_{CP}$  of the systematic errors will be close to three times smaller as compared to other experiments
- Even so, it is of vital importance to measure the neutrino cross-sections in this energy range as precisely as possible for precise measurements of the  $\delta_{CP}$ , especially since data on neutrino cross-sections in the neutrino energy range of ESSvSB, 0.2-0.6 GeV, is currently very scarce







# ESSvSB+

A synergic facility based in Europe

#### ESSvSB+ Superbeam

#### Cross-section measurements with:

- Low Energy nuSTORM:  $\pi \rightarrow \mu \rightarrow e + v_{\mu} + v_{e}$
- Low Energy ENUBET:  $\pi \rightarrow \mu + \nu_{\mu}$



- Design a **transfer line** from the ESSvSB accumulator ring to the target
- Design a special target facility that depends on one horn-target system
- Design a pion extraction and deflection system
- Design an **injection scheme** for the extracted pions to the racetrack storage ring, where the pions will decay to muons
- Design a **storage ring** for the low energy nuSTROM (for cross section measurements and sterile neutrino searches)
- Design a Monitored Neutrino Beam (low energy ENUBET for cross section measurements)
- **Optimize the performance** of the ESSvSB detectors









28.08.2023 Vidhva Hariharan, TAUP 2023 10

### **Horn Parameters for study**

To obtain a streamlined pion flux the following horn parameters are altered and studied:

- 1. L1
- 7. R4
- 2. L2
- 8. Rdt
- 3. L3
- 9. ztg
- 4 I
- 5 R2
- 6. R3





#### **Genetic Algorithm**



1. Population: Horn parameter list

A1: [[60, 15, 80, 78, 51, 68, 87, 2, 26], A2: [34, 90, 80, 97, 25, 89, 99, 83, 18], A3: [10, 53, 56, 25, 92, 3, 10, 51, 86]]

- 2. Fitness: Number of  $\pi$ + 15162, 15005, 15495
- 3. Fit Individuals: Individuals with highest  $\pi$ + A1: [[ 60, 15, 80, 78, 51, 68, 87, 2, 26], A3: [10, 53, 56, 25, 92, 3, 10, 51, 86]]
- 4. Crossed Over Probability: 0.8882167797500229 Crossed Offsprings A5: ([60, 53, 56, 25, 51, 68, 87, 51, 86], A6: [10, 15, 80, 78, 92, 3, 10, 2, 26]) Fitness: (15162.0,) (15495.0,)
- Mutation Probability: 0.235678014576
  Mutant A6: [10, 15, 80, 78, 92, 3, 10, 2, 26]
  Mutated Offspring A7: ([10, 15, 80, 6, 92, 3, 10, 2, 26],)
  Fitness: (15495.0,)
- Generation 1 Fit Individuals: A3(15495), A6(15495.0), A7(15495.0.)

#### **Pion distribution**



#### **Conclusions**

- ESS can also become a neutrino facility, ESSvSB, already proved to have a very high physics performance and potential.
- CPV:  $5\sigma$  could be reached over 70% of  $\delta_{CP}$  range by ESSvSB with large physics potential with less than 8° precision.
- Precise neutrino cross-section measurements, sterile neutrino searches and muon studies.
- New application submitted and now approved, and the projected started from 1 Jan., 2023
- This facility offers great opportunity for the community and it is an ideal platform to house R&D activities and other neutrino and muon experiments

# **Backup**

### Comparison between the oscillation maxima



## **Performance Comparison**









#### **Timeline**



2018: beginning of ESSvSB Design Study (EU-H2020) **COST Action** EuroNuNet

ESS NEUTRINO SUPER BEAM

> **2022**: End of ESSvSB Design Study, CDR and preliminary costing

arxiv.org/abs/2206.01208





2022-2026: Preparatory Phase, TDR

2026-2028:

International

Agreement

Phase,

Preconstruction





**2037-**: Data taking

2028-2036:

Construction of the facility and detectors, including commissioning







of the project

(2014) 127

Nucl. Phys. B 885

#### Low Energy neutrino Stored Muon facility



The LEnuSTORM facility will take advantage of the extremely high intensity ESS proton beam to:

- Serve the future long-baseline ESSnuSB neutrino-oscillation program by providing definitive measurements of (anti)v<sub>a</sub> and (anti)v<sub>u</sub>N scattering cross sections with percent-level precision;
- Allow searches for sterile neutrinos of exquisite sensitivity;
- Initiate the development of future muon accelerators (including studying 6D μ ionization cooling).
- The facility is unique, it will be capable of storing  $\mu^{\pm}$  beams with momentum of between 1 GeV/c and 6 GeV/c and a momentum spread of  $\pm 16\%$ .
- ❖ At nuSTORM, the flavour composition of the beam and the neutrino-energy spectrum are both precisely known.
- ❖ The storage-ring instrumentation will allow the neutrino flux to be determined to a precision of 1% or better.

19

#### **Enhanced NeUtrino BEams from kaon tagging**

Proposes a dedicated facility to measure  $v_{\mu}$  and  $v_{e}$  cross-sections precisely using a combination of monitored, narrow-band neutrino beams at the GeV energy scale and by instrumenting the meson-decay tunnel with a segmented calorimeter.

- The ENUBET approach is based on monitoring the production of large-angle positrons from  $K^+ \to \pi^0 e^+ v_e^-$  (Ke3) decays in the decay tunnel.
- In addition, ENUBET will monitor muons produced in kaon and pion decays, thus providing a precise measurement of the  $v_{\mu}$  flux.
- Due to the optimization of the focusing-and-transport system of the momentum-selected narrow-band beam of the parent mesons, the Ke3 decay represents the main source of electron neutrinos.
- Furthermore, the positron rate may be used to measure the  $v_e$  flux directly. Consequently, the monitored  $v_e$  beam will lower the uncertainties on the neutrino flux and flavour for a conventional beam from the current level of O(7%-10%) to ~ 1%.
- Similar precision is expected for the  $v_{\mu}$  flux, with the bonus that the neutrino energy will be determined with a precision of ~ 10% at the single neutrino level by the "narrow-band off-axis technique", i.e. using only the position of the  $v_{\mu}$  interaction vertex.