A novel imaging detector for liquid scintillator experiments

Nicolò Tosi – INFN Bologna on behalf of the DUNE Collaboration

XVIII International Conference on Topics in Astroparticle and Underground Physics 2023 28.08. – 01.09.2023 University of Vienna

The DUNE Experiment

The Deep Underground Neutrino Experiment is a new generation long-baseline neutrino oscillation experiment.

- High precision measurements of the neutrino oscillation parameters: δ_{CP} , mass ordering, θ_{23}
- Supernova and solar neutrinos detection
- Beyond the Standard Model Searches

29/08/2023

The ND Complex

 ND-LAr (segmented LAr TPC similar to the FD)

TMS (magnetized muon spectrometer)

SAND (on axis magnetized spectrometer)

 ND-LAr and TMS will move in order to "scan" over the spectrum of v energies

SAND

The System for on-Axis Neutrino Detection

- Superconducting magnet (0.6 T)
- Electromagnetic calorimeter
- Target Tracker with CH₂, C targets
- GRAIN: 1 t LAr Active target
- Its physics goals include
- Monitoring of the on axis $\nu/\overline{\nu}$ spectra to detect beam variations on a weekly basis

From KLOE

(LNF)

- Perform neutrino cross-section studies on different nuclear targets
- ν_{μ} , ν_{e} on-axis flux measurement for a robust analysis in combination with other ND detectors

GRAIN

Uses an innovative technique, replacing the TPC:

- Argon scintillation light is captured by an imaging device
- Charge is not collected (too slow for the ND)

To build a **camera**, we need:

- An optical system
- A sensor plane
- A readout chip

Optical System

Working with LAr scintillation λ and n is not easy, two options:

- UV gas filled lenses
- Coded Aperture masks

29/08/2023

Gas Lens Cameras

LAr scintillation λ and \mathbf{n} are challenging:

- Use inverted lens with gas filled gap (N₂) with n = 1
- Use Xe doping to raise λ for better transmission through the lens

Wavelength shift with Xe

Example event views

[A. Neumeier et al 2015 EPL 109 12001]

Image Reconstruction (lenses)

- Track fits on individual views
- Epipolar and Multiple-View Projective Geometry methods applied to
 - Muon Track 3D reconstruction
 - Two tracks Vertex 3D reconstruction

- Matching conditions for multiple 2D Views and Image Transfer
- Excellent resolution from simulation

Limited depth of field compared to the camera size

[*] Andreotti, M., et al. "Coded masks for imaging of neutrino events." The European Physical Journal C 81 (2021): 1-15.

Coded Aperture Cameras

Coded Aperture masks avoid issues with λ and n

- Extension of the pinhole camera
- Good depth of field, compact
- Worse contrast than lenses

Concept

Example detector layout

Reconstructed Track

Image Reconstruction (CAM)

- Maximum Likelyhood Expectation Maximization algorithm
- Iterative algorithm converges towards the correct solution
- Self normalizing, preserves amplitude
- Computationally expensive, needs GPUs and lots of RAM

Image Reconstruction (CAM)

- Maximum Likelyhood Expectation Maximization algorithm
- Iterative algorithm converges towards the correct solution
- Self normalizing, preserves amplitude
- Computationally expensive, needs GPUs and lots of RAM

GRAIN Vessel Design

- Elliptical to minimize thickness along beam axis
- Steel (6mm) inner LAr vessel (~700 litres, 1 ton)
- Carbon Fibre + Al honeycomb outer Vacuum vessel

Status of hardware

Control of the contro

Artic in Genoa, for studies of sensor performance, starting soon

256 ch SiPM matrix

PCB with 8 x 32ch ALCOR cryo ASICs

 Integration facility in LNL, for cryo-vacuum integration studies, will host a prototype inner vessel and services, in design

Outlook

GRAIN will be the first detector to image LAr scintillation

Cryo demonstrator with 3 x 256 pixel cameras almost ready

Prototype inner vessel design finalized

Cameras and ASIC with 1024 pixels under development

On track to be ready for first beams in ND

Backup

Image Reconstruction (lenses)

Image Reconstruction (CAM)

[Willingale, Sims, and Turner. "Advanced deconvolution techniques for coded aperture imaging" NIM 221.1 (1984). doi: https://doi.org/10.1016/0167-5087(84)90180-7]

GRAIN integration

DAQ Plans

