
Qualitatively, the autoencoder 
does well on simulated data 

with detector noise
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Introduction Results
• P-type point contact (PPC) high-purity germanium (HPGe) detectors are used for rare event 

searches, such as neutrinoless double-beta decay and other beyond Standard Model physics
• Detecting rare event interactions will ultimately help us to better understand the Universe
• Due to the infrequent nature of signal events, backgrounds dominate interactions of interest
• Electronic noise presents additional challenges in distinguishing/rejecting background events
• Further analytical techniques are required to extract information from modern experiments

• We focus on using deep neural networks to remove noise from detector event traces

Background

Deep Learning on Particle Detector Signals
• Denoising using machine learning offers numerous potential benefits

• Reduction in the energy resolution
• Identification of low-energy signal events masked by electronic noise
• Improved background rejection techniques based on signal characteristics
• Fast processing once model is trained; scalable to constant influx of detector data

• Technique can be extended to other experiments and beyond denoising
• Utilization of latent representation of pulses for other classification tasks
• Extendable to other problems including generating “fake” data
• Applicable to a broad range of detector technologies and 1D electronic signals

The Convolutional Autoencoder

Extended Applications and Future Work

HPGe PPC Detector

HPGe PPC Detector

Additional Detector Technologies
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Inline Detector Denoising
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Results on simulated data:
• Superior denoising over traditional 

methods from mean squared error 
comparisons using different regions

• Now applying these methods to signals from other detector 
technologies including spherical proportional counters (SPCs) 
and bubble chambers (results here focused on SPCs)

• Comparison to traditional noise removal methods (same ones 
as for the PPC HPGe detector) demonstrates that the 
autoencoder denoises SPC pulses well; outperforms traditional 
denoising methods by ~2 orders of magnitude (not shown)• Developed a flexible convolutional autoencoder to 

remove electronic noise [1]
• An autoencoder maps its input back to its input
• Internal constraint is used to ensure only the 

most important parts of the data are encoded
• Objective to remove noise is made explicit by 

forcing it to reconstruct the clean signal from 
the noisy input

• Applied it to signals from the PPC HPGe detector

Procedure
Sources of data for training and validation
• Simulated clean pulses corresponding to points in detector
• Calibration sources with known energy distributions

• 241Am (60 keV; low energy/high noise)
• 60Co (1173 keV and 1332 keV; high energy/low noise)

• Pure detector noise (for data augmentation)

Data preprocessing procedure (real detector data)
• Remove baseline
• Remove exponential decay with pole zero correction
• Scale to have amplitude of unity (trapezoidal filter)

Data augmentation procedure (simulations)
• Combine simulated pulses to create artificial events
• Apply random horizontal and vertical shifts, amplitude scales
• Add detector noise with random standard deviation

• Architecture is fully convolutional
• Weight sharing provides consistent noise removal
• Emphasizes feature locality and shift equivariance
• Significant reduction in trainable parameters
• Allows for a variable input shape (subject to 

certain restrictions)

𝑥 simulated clean pulse

෤𝑥 simulated pulse with added detector noise

𝑦 encoded/latent representation

𝑧 reconstructed output
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• Also compared energy measurements on both noisy 
and denoised events to those on clean events

• Energy measurements on denoised events are more 
consistent and better model energy measurements on 
clean events
• Supports argument that noise removal tends to 

create an event more like a clean pulse

• By implementing the denoising model prior to the 
event triggering system, the triggering threshold 
can be lowered (as electronic noise is reduced)
• Signals dominated by noise can be 

identified/recorded, improving sensitivity to low-
energy rare event searches

• Will need to denoise considerable amounts of data
• ~2Gb/s for HPGe PPC detectors

• This system could be extended to actively learn, 
allowing for a denoising system that could be 
transferred to different detectors/applications

Training procedures
• Regular procedure maps noisy pulse to its clean progenitor (as described above)
• Also developed/applied two methods that do not require detailed detector simulations [1]

• One method, an extension of Noise2Noise [4], maps a noisy pulse to another noisy pulse 
using the same underlying trace; learns to predict the mean

• Very similar performance to regular training procedure on simulations and data

• CycleGAN architectures offer a unique way to 
train denoising neural networks
• Does not require corresponding clean and 

noisy training pairs
• CycleGAN systems use two generative and 

discriminator models that learn adversarially
and to fool one another

Results on real detector data:
• Better statistical agreement between noisy and denoised 

pulses than best fit simulated “library” pulse via χ2 fit
• Improvements in energy resolution under some 

circumstances (not shown)
• Less substantial than expected from simulations due to 

unmodelled effects in real data

• Improvements in overall 
energy resolution at all 
noise levels

• Interactions disturb charge carriers 
in the detector medium

• These charge carriers are collected 
and converted to a voltage

• Voltage sampled at a fixed interval
• Result is a short 1D pulse of order 

~30μs (4096 samples at 8ns)

• Shape (rise time, single-/multi-site) is dependent on type of event and position in the detector
• Observed noise levels after preprocessing reflect energy of pulse; signal-to-noise ratio (SNR)
• Data collected continuously at 125MHz with a 16-bit digitizer

• Results presented here are focused on HPGe detector data
• However, noise removal is obviously beneficial in many contexts
• Work is broadly applicable to the particle astrophysics community and is easily expanded on

• Our group is now exploring various extensions of this research

• Transfers elements between two 
corresponding domains
• Our CycleGAN learns to transfer physics 

event signals between the “noisy” and 
“clean” domains

• See poster by Tianai Ye for more details on 
the procedure and corresponding results
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