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Introduction Results
« P-type point contact (PPC) high-purity germanium (HPGe) detectors are used for rare event HPGe PPC Detector
searches, such as neutrinoless double-beta decay and other beyond Standard Model physics
« Detecting rare event interactions will ultimately help us to better understand the Universe | Results on simulated data: 102 - Rise region
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« Due to the infrequent nature of signal events, backgrounds dominate interactions of interest

 Electronic noise presents additional challenges in distinguishing/rejecting background events

« Further analytical techniques are required to extract information from modern experiments
« We focus on using deep neural networks to remove noise from detector event traces
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« Superior denoising over traditional
methods from mean squared error
comparisons using different regions
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» Signals are from a cylindrical 1kg PPC HPGe detector located at Queen'’s University 5 o — Ezd'pl 83 30- §§§§§7§7§§$§T§§
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in the detector medium 3 Qualitatively, the autoencoder 2 E 10 Bl LAy Ly ¥7¢ 0 f
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and converted to a voltage I 005 e 8 0-20
. \Iéce)lstj lgEeiSs: r:hp(lﬁtd 1a[§ ?)Zléeedo}néfg\;?l <Z§ 0.0 Results on real detector data: | | g 0.015 - Do patse
~30us (4096 samples at 8ns) | | | « Better statistical agreement between noisy and denoised 3 1 Expected 2 PDF
[2] 0 10 20 30 pulses than best fit simulated “library” pulse via x? fit B 0.010
Time (us)  Improvements in energy resolution under some %
« Shape (rise time, single-/multi-site) is dependent on type of event and position in the detector circumstances (not shown) 5007
« Observed noise levels after preprocessing reflect energy of pulse; signal-to-noise ratio (SNR)  Less substantial than expected from simulations due to 0000 1 |
« Data collected continuously at 125MHz with a 16-bit digitizer unmodelled effects in real data 100 150 200 250 300 350 400
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Deep Learning on Particle Detector Signals Extended Applications and Future Work
« Denoising using machine learning offers numerous potential benefits « Results presented here are focused on HPGe detector data
« Reduction in the energy resolution « However, noise removal is obviously beneficial in many contexts
- |dentification of low-energy signal events masked by electronic noise « Work is broadly applicable to the particle astrophysics community and is easily expanded on
« Improved background rejection techniques based on signal characteristics « Our group is now exploring various extensions of this research
 Fast processing once model is trained; scalable to constant influx of detector data . .
Additional Detector Technologies
« Technique can be extended to other experiments and beyond denoising . | 40 - — Moy pulse
+ Utilization of latent representation of pulses for other classification tasks * Now applying these methods to signals from other detector — Predicted pulse
+ Extendable to other problems including generating “fake” data technologies including spherical proportional counters (SPCs) ¢
« Applicable to a broad range of detector technologies and 1D electronic signals and bubble chambers (results here focused on SPCs) 2 Ok .
- Comparison to traditional noise removal methods (same ones =
The Convolutional Autoencoder as for the PPC HPGe detector) demonstrates that the
autoencoder denoises SPC pulses well; outperforms traditional ‘40'0 e
Autoencoder « Developed a flexible convolutional autoencoder to denoising methods by ~2 orders of magnitude (not shown) Time (us)
. j‘:z remove electronic noise [1] o |
- An autoencoder maps its input back to its input ool Dendiees ata * Also compared energy measurements on both noisy

 Internal constraint is used to ensure only the
most important parts of the data are encoded

« Objective to remove noise is made explicit by
forcing it to reconstruct the clean signal from
the noisy input

Clean data . and denoised events to those on clean events
=<4 + Energy measurements on denoised events are more
consistent and better model energy measurements on
clean events
« Supports argument that noise removal tends to
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X simulated clean pulse
X simulated pulse with added detector noise CHCIQGAN
=nooder - Decoder ~oss function y encoded/latent representation
« CycleGAN architectures offer a unique way to * Transfers elements between two
V4 reconstructed output : .. . :
train denoising neural networks corresponding domains
* Architecture is fully convolutional - Does not require corresponding clean and  + Our CycleGAN learns to transfer physics
* Weight sharing provides consistent noise removal | noisy training pairs event signals between the “noisy” and
* Emphasizes feature locality and shift equivariance ol L @ » CycleGAN systems use two generative and “clean” domains
. o [ . . . U ~ . . . . . . .
» Significant reduction in trainable parameters 1k 1 1 discriminator models that learn adversarially + See poster by Tianai Ye for more details on
* Allows for a variable input shape (subject to and to fool one another the procedure and corresponding results
certain restrictions) [3]
e L ko G
N - T N
Procedure D : Dy [z vl 2] vl [x 9
Sources of data for training and validation x| v ] X Y] [x s
. . . . § . & § —>@\... " loss
. Smulatgd clean pulsgs corresponding to points in detector Noisypulse:\ﬁ/ Compuses e S\ " /0;5
 (Calibration sources with known energy distributions .
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« 241Am (60 keV; low energy/high noise) -
« 0Co (1173 keV and 1332 keV; high energy/low noise) ‘ bl
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Remove aseline fial th pol " S event triggering system, the triggering threshold
Serrlwo;/e ﬁxponen 'l‘i deca])c/ Wl't ptO € zerqdcolrfr.letc on can be lowered (as electronic noise is reduced) 21
Cale 10 nave amplituae or uni y( rapezoidaal 1l er) | . Signals dominated by noise can be o
Dat tati g (simulations) i identified/recorded, improving sensitivity to low- % o‘%m—f&-m__q
aCa alt‘),gmen a l‘?[ndproclze lftre SIIT;U a tl?__ns | t | energy rare event searches g
Aon; ine Zlmuﬁ e puts|es 3 creas. e IarhI.]Ic‘EIc‘al eve?'tsd | | | | | | | « Will need to denoise considerable amounts of data . Noisy output
Agg )(; r?n tOfT] (?FIZOT(ha and ver |tca j IdSa armi.l uae scales 0 5 10 Ti:nSe (IJSZ)O 25 30 e ~2Gb/s for HPGe PPC detectors — glean. Oud’tloutt t
cLector noise With fahdom stahdard deviation - This system could be extended to actively learn, I I i ot | N
a”owing for a denoising System that could be 0 2000 4000 600.0 8000 1000012000 1400016000
U v 15- . . : Signal Samples
S 104 g b transferred to different detectors/applications
= 3 1.0-
£ £
s s L Acknowledgements
[ g 0
‘_;" . ‘_;U 0.0 - _ « Thank you to my supervisor Prof. R. D. Martin and to all other authors of the denoising paper: V. Basu, C. Z. Reed, N. J. Rowe, M. Shafiee, T. Ye
5 0.0 - Noisy pulse 5 Noisy pulse « This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Arthur B. McDonald Canadian Astroparticle Physics
= — Clean pulse z —-0.5 — Clean pulse Research Institute, the Canada Foundation for Innovation, the Walter C. Sumner Memorial Fellowship, and the NVIDIA corporation through their academic
2 é zll é é } 8 2 é éll !'5 é % 3 hardware grant program
Time (us) Time (us)
o References
Training procedures
* Regular procedure Maps nOisy pUlSG to its clean progenitor (as described above) [1] Anderson, M. R. et al., “Performance of a convolutional autoencoder designed to remove electronic noise from p-type point contact germanium detector
. . . . . signals,” Eur. Phys. J. C 82, 1084 (2022). arXiv:2204.06655; d0i:10.1140/epjc/s10052-022-11000-w
* AlSO deveIOpEd/applled two methOdS that dO not requ’re detalled detector S’mUIat’onS [1] [2] “P-Type Point-Contact (PPC) Germanium Detectors,” https://www.npl.washington.edu/majorana/design-technologies
° One method an extension Of NOiSEZNOiSG [4] maps a noisy pUlSE to another noisy pUlSG [3]1 “1D convolution,” https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/1d-convolution
. ' . " [4] Lehtinen, J. et al., “Noise2Noise: Learning image restoration without clean data,” Proc. Int. Conf. Mach. Learn., vol. 80, pp. 2965-2974 (2018). arXiv:1803.04189
using the same underlylng trace, learns to predlct the mean [5] Zhu, J. Y. et al., “Unpaired image-to-image translation using cycle-consistent adversarial networks.” Proc. IEEE Int. Conf. Comput. Vis. (2017). arXiv:1703.10593

« Very similar performance to regular training procedure on simulations and data
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