#178 Application of gamma Transition-Edge Sensor (TES) to ¹¹²Sn two-neutrino double electron capture search

*K.Ichimura¹, K. Ishidoshiro¹, A. Gando¹, K. Hattori², T. Kikuchi², H. Yamamori², S. Yamada³, T. Kishimoto⁴

I. Introduction: Double electron capture (ECEC)

- Two-neutrino two K-shell electrons capture case
- ✓ Zero-neutrino ECEC : $(A, Z) + 2e^- \rightarrow (A, Z 2)$
- Beyond the standard model: lepton number violation, Majorana nature of neutrino
- ✓ Two-neutrino ECEC : $(A, Z) + 2e^- \rightarrow (A, Z 2) + 2\nu_e$
 - Rare decay, but allowed in the standard model
 - Only ¹²⁴Xe ECEC is observed so far ([1])
 - The observation of 2 ν ECEC gives some inputs for nuclear matrix element
 - Need to observe 2 X-rays or Auger electrons.

[1]Nature 568, 532–535 (2019)

III. TES (Transition-Edge Sensor)

- ✓ One of the superconducting detectors (SNSPD, MKID, MMC, STJ, etc.)
- $\checkmark \gamma$ -TES calorimeter: detects individual photons, converts their energy into heat
 - Small temperature rise → large resistance change
 - Relatively fast pulse (T_{fall}: O(msec))
- ✓ Ultra high energy resolution : ×20 better than semiconductor detector
- \checkmark Application of γ -TES :
 - Measurement of isotopic composition of nuclear materials
 - Monitoring transuranic radionuclides inside the human body
 - Rare event search (source = absorber)
 - High detection efficiency with high energy resolution

V. Signal simulation

Detection efficiency (ROI: 51 — 54 keV)
45.4%
55.8%
59.9%
69.1%

- ✓ MC based on the atomic relaxation package in Geant4
- ✓ Signal MC: two Cd atoms with a single K-shell vacancy, uniformly generated in the Sn absorber
 - 2 × Cd K-shell binding energy = 53.42 keV
 - 53.74 keV after considering energy correction
 - The difference in the binding E of all electrons of the parent/daughter nuclei
 - The relative capture ratio of two K-shell vacancy:
 - 70.9% (considering K and L1 shell), 73.4% (up to N5 shell) (following [6])

[6] Phys. Rev. C 106, 024328 (2022)

- 1: Research Center for Neutrino Science, Tohoku University
- 2: National Institute of Advanced Industrial Science and Technology
- 3: Department of Physics, Rikkyo University
- 4: Research Center for Nuclear Physics, Osaka University

II. Introduction: 112Sn ECEC

- \checkmark 112Sn (g.s.,0⁺) + 2e⁻ → 112 Cd (g.s.,0⁺) + (2 ν_e) + 1.919 MeV
- ✓ Current experimental search : enriched sample (disk shape) + HPGe [2,3]
 - Sensitive to de-excitation γ , annihilation γ from β^+
 - Not sensitive to 2 ν ECEC to g.s. (shortest half life mode in ¹¹²Sn decay)[4]
 - Due to X-ray absorption in sample
- \checkmark We propose new method to search for 2ν ECEC to g.s. decay mode

[2] Phys. Rev. C 80, 035501 (2009), [3] Phys. Rev. C 78, 035504 (2008), [4] Nucl. Phys. A 753 (2005) 337–363

IV. AIST γ —TES with Sn absorber

- - A2, B1, B2, C2 pixel
- ✓ Demonstrates good 237 Np/ 233 Pa γ separation with O(40 eV) **FWHM** [5]
- √ Trilayer membrane structure : unique development by AIST
 - 7 μm thickness: suitable for heavy/large size absorber
 - Conventional SiN membrane: 1 µm thickness
- \rightarrow In this work, 90 hr, 4 pixels ²³⁷Np calibration source data is used for 2 ν ECEC to g.s. analysis

[5]T. Kikuchi et. al., J. Low. Temp. Phys. 211, 207-213 (2023)

²³⁷Np

²³³Pa

VI. Analysis

- ✓ Analyzed ²³⁷Np source data used in Ref. [5]
 - 4 pixels, 90 hours data (in Ref. [5], 4 pixels, 60 hours data)
- Clearly observed ²³⁷Np γ , ²³³Pa γ and Pt-Xray (it wraps and protects the ²³⁷Np source)
- ✓ Assume flat BG in signal region and sideband region
- Continuum component : Compton scattering of high E γ from source and environmental, minimum ionization of cosmic μ
- ✓ Count rate of signal region subtracted by the sideband region is used for this analysis

Energy info: taken from ENSDF database and table of isotopes

VII. Preliminary result and future prospect

Systematic uncertainties evaluation is ongoing

- ✓ Take 8 pixel data w/o ²³⁷Np source in this year
- $0.8 \times 0.8 \times 0.8 \text{ mm}^3 \text{ size Sn absorber}$
- Eventually take data with many pixels in Kamioka Cryolab ✓ Combined analysis: < 1110 counts/yr/pixel @ 90% C. L.(preliminary)
 </p> - O(10⁵) μ flux reduction
- Corresponds to $T_{1/2}$ (2 ν DEC) > 9.0 \times 10¹² yr @ 90% C.L.(preliminary) γ , neutron shield
 - Low BG cryostat

Theoretical prediction (1.7×10²² yr) 2.0 x 2.0 x 2.0 mm³ Absorber $= 1.0 \times 1.0 \times 1.0 \text{ mm}^3$ $0.8 \times 0.8 \times 0.8 \text{ mm}^3$ $0.5 \times 0.5 \times 0.5 \text{ mm}^3$

membrane structure → Suitable for this search

AIST's thick

- Optimistic assumption :
 - No events in ROI for all pixels (< 2.3 counts @ 90% C. L.)
- 100% ¹¹²Sn enrichment absorber
 - (n. a. = 0.97%): 94.32% [2], 99.5%[3] enrichment is achieved
- 3 year data taking
- → Could reach the theoretical prediction

XVIII International Conference on Topics in Astroparticle and Underground Physics (TAUP 2023), 28 August - 1 September, Vienna This work is supported by JSPS Kakenhi 19H05809, 22K18709 *: presenter, <u>ichimura@awa.tohoku.ac.jp</u>