#178 Application of gamma Transition-Edge Sensor (TES) to ¹¹²Sn two-neutrino double electron capture search *K.Ichimura¹, K. Ishidoshiro¹, A. Gando¹, K. Hattori², T. Kikuchi², H. Yamamori², S. Yamada³, T. Kishimoto⁴ I. Introduction: Double electron capture (ECEC) - Two-neutrino two K-shell electrons capture case - ✓ Zero-neutrino ECEC : $(A, Z) + 2e^- \rightarrow (A, Z 2)$ - Beyond the standard model: lepton number violation, Majorana nature of neutrino - ✓ Two-neutrino ECEC : $(A, Z) + 2e^- \rightarrow (A, Z 2) + 2\nu_e$ - Rare decay, but allowed in the standard model - Only ¹²⁴Xe ECEC is observed so far ([1]) - The observation of 2 ν ECEC gives some inputs for nuclear matrix element - Need to observe 2 X-rays or Auger electrons. [1]Nature 568, 532–535 (2019) ## III. TES (Transition-Edge Sensor) - ✓ One of the superconducting detectors (SNSPD, MKID, MMC, STJ, etc.) - $\checkmark \gamma$ -TES calorimeter: detects individual photons, converts their energy into heat - Small temperature rise → large resistance change - Relatively fast pulse (T_{fall}: O(msec)) - ✓ Ultra high energy resolution : ×20 better than semiconductor detector - \checkmark Application of γ -TES : - Measurement of isotopic composition of nuclear materials - Monitoring transuranic radionuclides inside the human body - Rare event search (source = absorber) - High detection efficiency with high energy resolution #### V. Signal simulation | Detection efficiency
(ROI: 51 — 54 keV) | |--| | 45.4% | | 55.8% | | 59.9% | | 69.1% | | | - ✓ MC based on the atomic relaxation package in Geant4 - ✓ Signal MC: two Cd atoms with a single K-shell vacancy, uniformly generated in the Sn absorber - 2 × Cd K-shell binding energy = 53.42 keV - 53.74 keV after considering energy correction - The difference in the binding E of all electrons of the parent/daughter nuclei - The relative capture ratio of two K-shell vacancy: - 70.9% (considering K and L1 shell), 73.4% (up to N5 shell) (following [6]) [6] Phys. Rev. C 106, 024328 (2022) - 1: Research Center for Neutrino Science, Tohoku University - 2: National Institute of Advanced Industrial Science and Technology - 3: Department of Physics, Rikkyo University - 4: Research Center for Nuclear Physics, Osaka University #### II. Introduction: 112Sn ECEC - \checkmark 112Sn (g.s.,0⁺) + 2e⁻ → 112 Cd (g.s.,0⁺) + (2 ν_e) + 1.919 MeV - ✓ Current experimental search : enriched sample (disk shape) + HPGe [2,3] - Sensitive to de-excitation γ , annihilation γ from β^+ - Not sensitive to 2 ν ECEC to g.s. (shortest half life mode in ¹¹²Sn decay)[4] - Due to X-ray absorption in sample - \checkmark We propose new method to search for 2ν ECEC to g.s. decay mode [2] Phys. Rev. C 80, 035501 (2009), [3] Phys. Rev. C 78, 035504 (2008), [4] Nucl. Phys. A 753 (2005) 337–363 #### IV. AIST γ —TES with Sn absorber - - A2, B1, B2, C2 pixel - ✓ Demonstrates good 237 Np/ 233 Pa γ separation with O(40 eV) **FWHM** [5] - √ Trilayer membrane structure : unique development by AIST - 7 μm thickness: suitable for heavy/large size absorber - Conventional SiN membrane: 1 µm thickness - \rightarrow In this work, 90 hr, 4 pixels ²³⁷Np calibration source data is used for 2 ν ECEC to g.s. analysis [5]T. Kikuchi et. al., J. Low. Temp. Phys. 211, 207-213 (2023) ²³⁷Np ²³³Pa ## VI. Analysis - ✓ Analyzed ²³⁷Np source data used in Ref. [5] - 4 pixels, 90 hours data (in Ref. [5], 4 pixels, 60 hours data) - Clearly observed ²³⁷Np γ , ²³³Pa γ and Pt-Xray (it wraps and protects the ²³⁷Np source) - ✓ Assume flat BG in signal region and sideband region - Continuum component : Compton scattering of high E γ from source and environmental, minimum ionization of cosmic μ - ✓ Count rate of signal region subtracted by the sideband region is used for this analysis Energy info: taken from ENSDF database and table of isotopes ## VII. Preliminary result and future prospect Systematic uncertainties evaluation is ongoing - ✓ Take 8 pixel data w/o ²³⁷Np source in this year - $0.8 \times 0.8 \times 0.8 \text{ mm}^3 \text{ size Sn absorber}$ - Eventually take data with many pixels in Kamioka Cryolab ✓ Combined analysis: < 1110 counts/yr/pixel @ 90% C. L.(preliminary) </p> - O(10⁵) μ flux reduction - Corresponds to $T_{1/2}$ (2 ν DEC) > 9.0 \times 10¹² yr @ 90% C.L.(preliminary) γ , neutron shield - Low BG cryostat Theoretical prediction (1.7×10²² yr) 2.0 x 2.0 x 2.0 mm³ Absorber $= 1.0 \times 1.0 \times 1.0 \text{ mm}^3$ $0.8 \times 0.8 \times 0.8 \text{ mm}^3$ $0.5 \times 0.5 \times 0.5 \text{ mm}^3$ membrane structure → Suitable for this search AIST's thick - Optimistic assumption : - No events in ROI for all pixels (< 2.3 counts @ 90% C. L.) - 100% ¹¹²Sn enrichment absorber - (n. a. = 0.97%): 94.32% [2], 99.5%[3] enrichment is achieved - 3 year data taking - → Could reach the theoretical prediction XVIII International Conference on Topics in Astroparticle and Underground Physics (TAUP 2023), 28 August - 1 September, Vienna This work is supported by JSPS Kakenhi 19H05809, 22K18709 *: presenter, <u>ichimura@awa.tohoku.ac.jp</u>