

ν_τ APPEARANCE MEASUREMENT IN KM3NeT/ORCA

- The KM3NeT experiment
- Why search for $\nu_{ au}$ is important?
 - O sensitivity to ν_{τ} -appearance in KM3NeT/ORCA
- First ν_{τ} -appearance analysis with KM3NeT/ORCA 6
- O Particle Identification (PID) techniques
- $\odot \nu_{\tau}$ -normalization results
- Summary and outlook

Introduction

KM3NeT, Cubic Kilometre Neutrino Telescope: Water Cherenkov neutrino telescope under construction in the deep Mediterranean Sea

• atmospheric neutrinos: wide **energy range** and **baseline** (~cosine zenith angle of the interacting neutrino)

KM3NeT, Cubic Kilometre Neutrino Telescope: Water Cherenkov neutrino telescope under construction in the deep Mediterranean Sea

- atmospheric neutrinos: wide **energy range** and **baseline** (~cosine zenith angle of the interacting neutrino)
- two detection sites, broad physics program:
 - OARCA, neutrino astronomy in E ~ (TeV, PeV)
 - ORCA, neutrino oscillations in E~(3,100) GeV

offshore Toulon (France)

- depth: 2450 m
- Detection Units (DUs): 115
- instrumented vol. ~ 18%

Belgium

Luxembourg

Switzerland

Germany

Czechia

Austria

Slovenia

Poffshore CapoPassero (Italy)

- depth: 3560 m
- DUs: 230
- instrumented vol. ~ 9%

Rebecca's talk!

KM3NeT, Cubic Kilometre Neutrino Telescope: Water Cherenkov neutrino telescope under construction in the deep Mediterranean Sea

- atmospheric neutrinos: wide energy range and baseline (~cosine zenith angle of the interacting neutrino)
- two detection sites, broad physics program:
 - OARCA, neutrino astronomy in E ~ (TeV, PeV)
 - ORCA, neutrino oscillations in E~ (3, 100) GeV
 - precision in θ_{23} and Δm_{32}^2 oscillation parameters
 - Department of Neutrino Mass Ordering thanks to sensitivity to matter effect resonance in the earth
 - other "low-energy" searches: ν_{τ} appearance, non-standard interactions, sterile searches, etc...

- ν_{τ} is still one of the less studied SM particles (only ~2100 detected so far)
 - O low cross-section
 - O relatively high detection/production energy
- unitarity of the PMNS matrix as a test of the three flavors paradigm
 - O from next-generation neutrino experiments, constraints on PMNS elements \leq 10% (< 1% in e-row, but ~ 10 % in τ -row)

- ν_{τ} is still one of the less studied SM particles (only ~2100 detected so far)
 - O low cross-section
 - O relatively high detection/production energy
- unitarity of the PMNS matrix as a test of the three flavors paradigm
 - O from next-generation neutrino experiments, constraints on PMNS elements ≤ 10% (< 1% in e-row, but $\sim 10 \%$ in τ -row)
 - O constraint of ν_{τ} cross-section
 - O sterile neutrino coupling with $\nu_{ au}$

- unprecedented ν_{τ} statistics: 3000 ν_{τ} events/year in full geometry
 - O using unitarity (hypothesis of ν_{τ} norm = 1)
 - O analysis performed on a statistical basis: excess in shower sample (good shower reconstruction is critical!)

- KM3NeT/ORCA 6 longest data-taking in stable conditions
- O 433 kton-years (510 days, Mar '20 Nov '21)
- O track and shower reconstruction for each event
- background rejection
- O atmospheric muons (reconstructed down-going)
- O optical noise (40K decay, PMT dark counts, bioluminescence)
- neutrino selection and classification
- O Boosted Decision Tree (BDT) algorithm
- O three classes: high/low purity track, and showers

All events	Atm. muons	v_{μ}/\bar{v}_{μ} CC	v_{τ}/\bar{v}_{τ} CC
1870	7	1779	20
2001	83	1792	18
1959	21	908	130
5830	111	4480	169
	1870 2001 1959	1870 7 2001 83 1959 21	2001 83 1792 1959 21 908

RGS: alternative selection to separate between tracks and showers-

• Random Grid Search (RGS)

O optimized cut-based approach, more effective in the signal region

Pos ICRC2023 (2023) 1191

• Random Grid Search (RGS)

- O optimized cut-based approach, more effective in the signal region (showers)
- Ono training needed, smaller number of variables compared to BDT, and competitive performance
- O robust and adaptable to study new features for better shower-identification

11

RGS: alternative selection to separate between tracks and showers-

• At the analysis level, consistent results are obtained by comparing the two selections

- 2D binned log-likelihood fit of reconstructed energy and cosine zenith distributions, for the three classes
- $\nu_{ au}$ -normalization, scanned between 0 and 2
 - among all systematics, strongest impact of light simulation at high-energy (>50 GeV) and shower normalization

Systematics	Priors
Spectral Index	± 0.3
$v_{ m hor}/v_{ m ver}$	± 2%
$ u_{\mu}/ar{ u}_{\mu}$	± 5%
v_e/\bar{v}_e	± 7%
$ u_{\mu}/ u_{e}$	± 2%
NC Normalisation	± 20%
Energy scale	± 9%
High-energy Light Simulation	± 50%
Overall Normalisation	free
Track Normalisation	free
Shower Normalisation	free
Muon Normalisation	free

Pos ICRC2023 (2023) 1107

- With only 5% of final fiducial volume, competitive results with other experiments
- From fitting the data, no clear evidence excluding $n_{\nu_{\tau}}$ = 1

- CC-only: ν_{τ} -norm = $0.50\pm_{0.42}^{0.46}$ $n_{\nu_{\tau}}$ = 0, favored within 1.2 σ
- CC+NC: ν_{τ} -norm = $0.67\pm_{0.33}^{0.37}$ $n_{\nu_{\tau}}$ = 0, disfavoured with 2.2 σ

- ullet Precise measurement of u_{τ} appearance is a key study to test the three neutrino-flavor paradigm
- Thanks to its active volume, KM3NeT/ORCA will exploit an unprecedented statistics
- ullet A first measurement of the $n_{
 u_{ au}}$ has been performed in the KM3NeT/ORCA 6 geometry
 - O two alternative selections have been used: **RGS** gives compatible results with BDT classification
 - O analysis performed on a statistical basis: ν_{τ} tagged as an excess in the shower sample (169 candidates)
 - O no clear evidence excluding $n_{\nu_{\tau}}$ = 1
- Better precision, larger statistics, and a direct search for ν_{τ} in the shower sample are expected from the analysis of the larger geometries in the coming months ...stay tuned!

Eur. Phys. J. C 80, 99 (2020)

J. Phys. G: Nucl. Part. Phys. 43 084001 (2016)

• 3" Hamamatsu PMTs assembled into a spherical structure for a 4π coverage:

- O high time precision (~ns)
- O good spatial resolution (~10 cm)

x 31

x 18

31.08.2023 - TAUP 2023 - C. Lastoria

3" PMTs

- Depending on the neutrino flavor and interaction, two event topologies can be reconstructed:
 - O track-like events, very elongated and easier to be reconstructed
 - O shower-like events, more spherical

T. Phys. G: Nucl. Part. Phys. 43 084001 (2016)

- Depending on the neutrino flavor and interaction, two event topologies can be reconstructed
 - O maximum likelihood algorithms optimized for the two topologies:
 - based on track and shower hypotheses per event
 - causality for hit selection
 - ▶ time in each PMT
 - vertex and direction determination
 matching the topology hypothesis
 - energy estimation
 - O compared to full ORCA, new reconstruction algorithm for showers uses single-PMT information (instead of single-DOM)

- Sensitivity to event reconstruction performance in full ORCA
 - Oup to 5° resolution for both topologies
 - O linear energy estimation in the full energy range

Eur. Phys. J. C (2022) 82: 26

very elongated events (real int. vertex, outside the instrum. vol.)

hadronic shower and μ track $(\tau^{\pm} \to \mu^{\pm} \bar{\nu}_{\mu} \bar{\nu}_{\tau}, \sim 17\% \text{ BR})$

 $\vec{\nu}_{\tau}$ CC

hadronic shower and EM shower

$$(\tau^{\pm} \to e^{\pm} \bar{\nu}_e \bar{\nu}_{\tau}, \sim 18\% \text{ BR})$$

hadronic shower

$$(\tau^{\pm} \to \text{hadrons}, \sim 65\% \text{ BR})$$

- data/MC comparison for the top five best RGS variables used in the ν_{τ} normalization fit (right plots)
 - O in slide 11, combinations A and B are shown on the left plot
- list of RGS variables used to distinguish between track and shower-like events (bottom-table)

	2D combination $Z = y - (ax + b)$					
	RGS track class definition: A&B					
pars.	feature x	feature y	coeff a	coeff b	cut dir.	
comb. A	n. tracks within 1°	log pre/pos fit dist. Shower Reco	-0.2356	+ 1.9124	Z > 0	
comb. B	furthest Cherenkov hit	mean time residual of sel. hits	-5.0702	+125.6146	Z > 0	
RGS shower class definition: $(\bar{A}or\bar{B}) \& (C\&D\&F)$						
comb. C	log pre/pos fit dist. Shower Reco	furthest Cherenkov hit	-0.0101	+71.1553	Z < 0	
comb. D	log pre/pos fit dist. Shower Reco	mean time residual of sel. hits	-3.0422	+7.4538	Z < 0	
comb. E	mean time residual of sel. hits	log dist. Shower vs Track reco	-0.3291	+2.503	Z < 0	

Selection	HP Tracks	LP Tracks	Showers	Total
ν_{μ} CC	1167	1189	672	3028
\bar{v}_{μ} CC	612	604	236	1452
$v_{\mu} + \bar{v}_{\mu} CC$	1779	1792	908	4480
v_e CC	37	62	434	533
\bar{v}_e CC	14	23	172	207
$v_e + \bar{v}_e$ CC	51	85	606	742
ν_{τ} CC	14	13	94	121
\bar{v}_{τ} CC	6	6	37	49
$v_{\tau} + \bar{v}_{\tau}$ CC	20	18	130	169
ν NC	10	17	226	253
\bar{v} NC	3	5	67	75
$v + \bar{v}$ NC	13	22	294	329
Atm. Muons	7	83	21	111
Total MC	1870	2001	1959	5830
Total Data	1868	2002	1958	5828

 \bullet among all systematics for the $\nu_{ au}$ -normalization fit, the strongest impact is due to light simulation at high-energy (>50 GeV) and shower normalization

Systematics	Priors
Spectral Index	± 0.3
$v_{ m hor}/v_{ m ver}$	± 2%
$ u_{\mu}/ar{v}_{\mu}$	± 5%
v_e/\bar{v}_e	± 7%
v_{μ}/v_{e}	± 2%
NC Normalisation	± 20%
Energy scale	± 9%
High-energy Light Simulation	± 50%
Overall Normalisation	free
Track Normalisation	free
Shower Normalisation	free
Muon Normalisation	free

KM3NeT/ORCA6 Preliminary, 433 kton-years

