

Synergy between neutrinoless double-beta decay & cosmology

Towards the discovery of Majorana neutrinos

¹ Dipartimento di Fisica G. Occhialini, Università di Milano-Bicocca

² INFN, Sezione di Milano-Bicocca

³ INFN, Laboratori Nazionali del Gran Sasso

XVIII International Conference on Topics in Astroparticle and Underground Physics

August 28 – September 1, 2023 - Vienna, Austria

$$(\mathsf{A},\mathsf{Z})
ightarrow (\mathsf{A},\mathsf{Z}{+}2) + 2\mathsf{e}^- + 2ar{
u}_\mathsf{e}$$
 (2v $eta eta$)

 $(A,Z) \rightarrow (A,Z+2) + 2e^-$ (ov $\beta\beta$)

TAUP

- L-violation: creation of a pair of electrons
 - discovery of ovββ
 - \Rightarrow L is not a symmetry of the universe
 - \Rightarrow link to baryon asymmetry in Universe (?)
- assume 3- ν exchange mechanism
 - $\rightarrow \ ov\beta\beta$ key tool for studying neutrinos
 - Majorana or Dirac nature
 - mass scale and ordering

Majorana effective mass

- $m_{\beta\beta}$ is the key quantity in $0\nu\beta\beta$
 - absolute value of ee-entry of ν mass matrix

•
$$m_{\beta\beta} \equiv |M_{ee}| = \left| \sum_{i=1,2,3} e^{i\xi_i} |U_{ei}^2| m_i \right|$$

•
$$U \equiv U|_{\text{osc.}} \cdot \text{diag}\left(e^{-i\xi_1/2}, e^{-i\xi_2/2}, e^{i\phi - i\xi_3/2}\right)$$

- 1 CP-violating + 3 Majorana phases
- U mixing matrix of oscillation analysis
- only two phases play a physical role

•
$$m_{\beta\beta} = \left| e^{i\alpha_1} \cos^2 \theta_{12} \cos^2 \theta_{13} m_1 + e^{i\alpha_2} \cos^2 \theta_{13} \sin^2 \theta_{12} m_2 + \sin^2 \theta_{13} m_3 \right|$$

No definitive indication on definitive value of $m_{\beta\beta}$ from theory Need to exploit information from the experimental observations

• Linear sum of ν masses: $\Sigma \equiv m_1 + m_2 + m_3 \Rightarrow \Sigma = m_l + \sqrt{m_l^2 + a} + \sqrt{m_l^2 + b}$

where NH:
$$\begin{cases} a = \delta m^2 & \text{or IH:} \\ b = \Delta m^2 + \delta m^2/2 \\ \end{array} \text{ or IH:} \begin{cases} a = \Delta m^2 - \delta m^2/2 \\ b = \Delta m^2 + \delta m^2/2 \end{cases}$$

- Limits of the order of 100 meV
 - from data probing different scales (CMB, Lyman- α , ...)
 - within the ACDM model
 - unavoidable systematics (not laboratory measurements)

Σ VS. *M*lightest

- extract value of $m_{
 m lightest}$
 - (δm^2 , Δm^2 from best-fit values)

•
$$G(\Sigma) \propto \exp\left[-\frac{1}{2}\frac{(\Sigma-\bar{\Sigma})^2}{\delta\Sigma^2}\right]$$

- choice for mass ordering (NH preferred)
- generate compatible value of m_{etaeta}

• limited by:
$$\begin{cases} m_{\beta\beta}^{\min} = \max\left\{2\left|U_{ei}^{2}\right|m_{i} - m_{\beta\beta}^{\max}, 0\right\} & i = 1, 2, 3\\ m_{\beta\beta}^{\max} = \sum_{i=1}^{3}\left|U_{ei}^{2}\right|m_{i} & \frac{25}{1-10} \end{cases}$$

- select from possible prior distributions
 - non-negligible impact

Phys. Rev. D 96, 073001 (2017)

Phys. Rev. D 96, 053001 (2017)

- consider NH case
- projection (integral over m₁)
 - mode around 4 meV
 - cuts: 16 meV (1 σ) / 50 meV (3 σ)
- OR equivalent analytic procedure
 - $d\mathcal{L}(\Sigma \mid cosm) = G(\Sigma) d\Sigma$

•
$$d\mathcal{L}(m_1 | \operatorname{cosm}) = G(\Sigma) \frac{d\Sigma}{dm_1} dm_1$$

• $d\mathcal{L}(m_{\beta\beta}, m_1) = d\mathcal{L}^{\text{prior}}(m_{\beta\beta}) \times d\mathcal{L}(m_1 | \text{cosm})$

•
$$d\mathcal{L}(m_{\beta\beta} \mid \operatorname{cosm}) = \int_{m_1^{\min}(m_{\beta\beta})}^{m_1^{\max}(m_{\beta\beta})} d\mathcal{L}(m_{\beta\beta}, m_1) \, dm_{\beta\beta}$$

... let us now try to remove any need of priors

A different perspective

- whatever the true value of $m_{\beta\beta}$: $m_{\beta\beta}^{\min}(m_1) \leq m_{\beta\beta} \leq m_{\beta\beta}^{\max}(m_1)$
- we get $m_1^{\min}(m_{\beta\beta})$ and $m_1^{\max}(m_{\beta\beta})$
 - $m_1^{\min} = 0$ when $m_{\beta\beta}$ in (1.4 3.7) meV

For an experiment of sensitivity $m^*_{\beta\beta}$

- $m^*_{etaeta} \geq m^{\max}_{etaeta}(m_1)$: inaccessibility
- $m^*_{\beta\beta} \leq m^{\min}_{\beta\beta}(m_1)$: observation
- $m_{\beta\beta}^{\min}(m_1) < m_{\beta\beta}^* < m_{\beta\beta}^{\max}(m_1)$: exploration
 - outcome depends on $\alpha_{\rm 1}$, $\alpha_{\rm 2}$

- let us approximate a constraint on $\boldsymbol{\Sigma}$ with a Gaussian pdf
 - parabolic chi-square: $\chi^2 \approx \frac{(\Sigma \overline{\Sigma})^2}{(\delta \Sigma)^2}$
 - (today $\delta \Sigma$ is about 50 meV)
 - + actual impact of functional form is \sim 10%
- restrict to physical range $\Sigma \ge \Sigma_{min} \equiv \Sigma(m_1 = 0)$ (i. e. \sim 59 meV)
- obtain cumulative $F_{\Sigma}(\Sigma) \equiv P(\Sigma \leq \Sigma) = 1 \frac{f(\Sigma)}{f(\Sigma_{\min})}$

•
$$f(\Sigma) = \operatorname{erfc}\left(\frac{\Sigma - \overline{\Sigma}}{\sqrt{2} \, \delta \Sigma}\right)$$

VIENNA 2023

- convert distribution from Σ to $m_{\beta\beta}$
 - not univocal (Majorana phases)
 - defined for $m_{\beta\beta}^{\max}$ and $m_{\beta\beta}^{\min}$
- get discovery probabilities
 - $F_{\Sigma}^{\max} \equiv F_{\Sigma} \left(\Sigma \left(m_{1}^{\max} \left(m_{\beta\beta}^{*} \right) \right) \right)$
 - $F_{\Sigma}^{\min} \equiv F_{\Sigma} \left(\Sigma \left(m_{1}^{\min} \left(m_{\beta\beta}^{*} \right) \right) \right)$
 - + 0 \leq $\textit{F}_{\Sigma}^{min}$ < $\textit{F}_{\Sigma}^{max}$ < 1 (monotonic nondecreasing)

•
$$0 \le m_1^{\min} < m_1^{\max}$$

only underlying hypotheses

- 3 light neutrinos
- Majorana mass
- known Σ distribution
 (no priors)

m^*_{etaeta}	Inaccess.	Exploration	Observation
5.0 meV (L) 2.5 meV (C)	F _Σ ^{min} O	$egin{array}{llllllllllllllllllllllllllllllllllll$	$1 - F_{\Sigma}^{\max}$ $1 - F_{\Sigma}^{\max}$ $1 - F_{\Sigma}^{\max}$
0.5 méV (R)	0	$F_{\Sigma} = F_{\Sigma}$	$1 - (F_{\Sigma}^{m} - F_{\Sigma}^{m})$

0.1 0.5 1 2 5 10 20

 $1 \ 2 \ 5 \ 10 \ 20$ $m_1 \ [meV]$

Present & future sensitivities

- present limit: $(36 156) \text{ meV} [\text{KLZ-2022}] \rightarrow \text{future searches: } (6 20) \text{ meV}$
 - bands ($m_{\text{lightest}} = 0$): IH: (19 48) meV / NH: (1.4 3.7) meV
- · theoretical uncertainties mostly from nuclear physics

m^*_{etaeta} [meV]	Inaccess.	Exploration	Observation
50	98.7 %	1.3 %	0.0 %
(pres.) 35	89.7 %	10.3 %	0.0 %
20	58.6 %	41.1 %	0.3 %
15	41.9 %	55.1 %	3.0 %
10	23.1 %	62.0 %	14.9 %
(future) 5	4.4%	51.4 %	44.2 %
2	0.0 %	32.3 %	67.7 %
0	0.0 %	12.4 %	87.6 %

- · today we see limited possibility of observation
- next-generation $ov\beta\beta$ experiments will have much larger room for a signal
- + even ultimate experiment at sub-meV gets \sim 20% probability in exploration
 - + canceling α_1 , $\alpha_2 \rightarrow \Sigma$ in the interval (61.4–67.5) meV

- + forthcoming cosmological investigation will push $\delta\Sigma$ down to \sim 20 meV
- let us assume the minimal value of $\boldsymbol{\Sigma}$ compatible with oscillations
 - + we take $\Sigma = \Sigma_{min}$ (59 meV)
- broadening of the exploration region at the expense of the observation region

- the Majorana effective mass is the key parameter in the search for $ov\beta\beta$
- information on m_{etaeta} can be extracted from oscillations & cosmology
 - distribution tends toward low values (few meV)
- it is possible to construct a pdf for m_{etaeta} which relies on no priors
 - only assumptions: 3 light neutrinos, Majorana mass, known $\boldsymbol{\Sigma}$
- next-generation $ov\beta\beta$ experiments will have high discovery power even in $\rm NH$ scenario

Thank you!

S. Dell'Oro, F. Vissani

Vienna - Aug 28, 2023 14 / 14

• alternative theory for massive & real fermions (E. Majorana, 1937)

•
$$\chi = \mathbf{C} \bar{\chi}^{t} \quad \left(\bar{\chi} \equiv \chi^{\dagger} \gamma_{0}, \quad \mathbf{C} \gamma_{0}^{t} = \mathbf{1} \right)$$

•
$$\mathcal{L}_{ ext{Majorana}} = rac{1}{2} ar{\chi} (i \partial \!\!\!/ - m) \chi$$

•
$$\chi(\mathbf{x}) = \sum_{\mathbf{p},\lambda} \left[a(\mathbf{p}\lambda) \psi(\mathbf{x};\mathbf{p}\lambda) + a^*(\mathbf{p}\lambda) \psi^*(\mathbf{x};\mathbf{p}\lambda) \right]$$

 \rightarrow $\forall \textbf{p},\textbf{2}$ helicity states: $|\textbf{p}\uparrow\rangle$ and $|\textbf{p}\downarrow\rangle$

- could fully describe massive neutrinos (G. Racah, 1937)
- · Majorana's hypothesis can be implemented in the SM

•
$$\chi \equiv \psi_L + C \bar{\psi}_L^t \rightarrow \psi_L = P_L \chi \equiv \frac{(1 - \gamma_5)}{2} \chi$$
 (usual field)

• L-violation due to Majorana mass

•
$$\mathcal{L}_{\text{mass}} = \frac{1}{2} \sum_{\ell, \ell' = e, \mu, \tau} \nu_{\ell}^{t} C^{-1} M_{\ell \ell'} \nu_{\ell'} + h. c. \Rightarrow \text{ ov}\beta\beta \text{ proportional to } |M_{ee}| \equiv m_{\beta\beta}$$

- detection of 2 emitted e^-
 - monochromatic peak at $Q_{\beta\beta}$
- observable is decay half-life $t_{1/2}^{o\nu}$ of a specific isotope

- information on neutrino mass from theory
 - $\left[\mathbf{t}_{1/2}^{o\nu}\right]^{\text{-1}} = \mathbf{G}_{o\nu} \left|\mathcal{M}\right|^{2} \frac{m_{\beta\beta}^{2}}{m_{e}^{2}}$
 - G_{ov} = Phase Space Factor (atomic physics)
 - *M* = Nuclear Matrix Element (nuclear physics)
 - $m_{\beta\beta}$ = effective Majorana mass (particle physics)

$$m_{etaeta} \leq rac{m_{ extsf{e}}}{\mathcal{M}\sqrt{\mathsf{G}_{ extsf{o}
u}}\,t_{ extsf{1/2}}^{ extsf{o}
u}}$$

