# New prospects in the search for 0ν2β decay of <sup>96</sup>Zr

P. Belli<sup>a,b</sup>, R. Bernabei<sup>a,b</sup>, F. Cappella<sup>c,d</sup>, V. Caracciolo<sup>a,b</sup>, R. Cerulli<sup>a,b</sup>, A. Incicchitti<sup>c,d</sup>, M. Laubenstein<sup>e</sup>, A. Leoncini<sup>a,b</sup>, V. Merlo<sup>a,b</sup>, <u>S.S. Nagorny</u><sup>f,g</sup>, V.V. Nahorna<sup>h</sup>, S. Nisi<sup>e</sup>, P. Wang<sup>h</sup>

```
<sup>a</sup>Dipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy

<sup>b</sup>INFN, sezione di Roma "Tor Vergata", Rome, Italy

<sup>c</sup>INFN, sezione di Roma, Rome, Italy

<sup>d</sup>Dipartimento di Fisica, Università di Roma "La Sapienza", Rome, Italy

<sup>e</sup>INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy

<sup>f</sup>Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Canada

<sup>g</sup>Arthur B. McDonald Canadian Astroparticle Physics Research Institute, Kingston, Canada

<sup>h</sup>Department of Chemistry, Queen's University, Kingston, Canada
```

# Walking through the forest of $2\beta$ giants...

Over the past 20 years, impressive progress has been achieved in the search for  $0v2\beta$  decay

| <b>GERDA, <sup>76</sup>Ge</b> Phys. Rev. Lett. 125 (2020) 252502              | $T_{1/2} > 1.8 \times 10^{26} \text{ yr}$ |
|-------------------------------------------------------------------------------|-------------------------------------------|
| KamLAND-Zen, <sup>136</sup> Xe<br>Phys. Rev. Lett. 117 (2016) 082503          | $T_{1/2} > 1.1 \times 10^{26} \text{ yr}$ |
| <b>EXO-200, <sup>136</sup>Xe</b> <i>Phys. Rev. Lett. 123 (2019)161802</i>     | $T_{1/2} > 3.5 \times 10^{25} \text{ yr}$ |
| MAJORANA Dem., <sup>76</sup> Ge<br>Phys. Rev. C 100 (2019) 025501             | $T_{1/2} > 2.7 \times 10^{25} \text{ yr}$ |
| <b>CUORE, <sup>130</sup>Te</b><br>arXiv:2011.09295v2                          | $T_{1/2} > 3.2 \times 10^{25} \text{ yr}$ |
| <b>CUPID-0, <sup>82</sup>Se</b> <i>Phys. Rev. Lett. 129 (2022) 111801</i>     | $T_{1/2} > 4.6 \times 10^{24} \text{ yr}$ |
| <b>CUPID-Mo, <sup>100</sup>Mo</b><br>Eur. Phys. J. C 82 (2022) 1033           | $T_{1/2} > 1.8 \times 10^{24} \text{ yr}$ |
| <b>NEMO-3,</b> <sup>100</sup> <b>Mo</b> <i>Phys. Rev. D 92 (2015) 072011]</i> | $T_{1/2} > 1.1 \times 10^{24} \text{ yr}$ |



#### **0ν2**β searches with non-trivial candidates



We propose to study

 $0v2\beta$  of <sup>96</sup>Zr with novel  $Cs_2ZrCl_6$  scintillators via "source = detector" experimental approach

<sup>76</sup>**Ge,** <sup>130</sup>**Te,** <sup>136</sup>**Xe** are facing issues with an internal and environmental gamma background, while profiting from well-developed crystal production and material purification technologies

**82Se, <sup>100</sup>Mo, <sup>116</sup>Cd** – only <sup>100</sup>Mo is under consideration due to a well-developed detector material and its high radiopurity

<sup>48</sup>Ca, <sup>96</sup>Zr, <sup>150</sup>Nd are the less studied due to combination of unfavorable experimental conditions specific to each of them

- $Q_{66}(^{96}Zr) = 3.35 \text{ MeV}$
- Favorable from a theoretical point of view  $T_{1/2} \sim (Q_{66})^5$
- Reasonable natural i.a. (2.8%)
- About 15 g of enriched <sup>96</sup>Zr (55%) could be available
- New advanced detector material (Cs<sub>2</sub>ZrCl<sub>6</sub>)
- Crystal production under full control
- Extensive studies of the detector properties

## Brief overview of rare decay search in 94,96Zr isotopes

| Experiment                                      | Transition                                                                                       | T <sub>1/2</sub><br>@ 90% C.L. (yr) | Ref. | Technique           |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------|------|---------------------|--|
| ZICOS<br>(Kamioka Observatory,<br>Japan)        | <sup>96</sup> Zr → <sup>96</sup> Mo (g.s.)                                                       | under<br>construction               | [1]  | Liquid scintillator |  |
| NEMO-3                                          | <sup>96</sup> Zr → <sup>96</sup> Mo (g.s.)                                                       | > 9.2×10 <sup>21</sup>              | [2]  | Tracking detector   |  |
| (Frejus, France)                                | 21 7 1010 (g.s.)                                                                                 | > 1.29×10 <sup>22</sup>             | [3]  |                     |  |
| Kimballton Underground Research Facility, (USA) | <sup>96</sup> Zr → <sup>96</sup> Mo (2 <sup>+</sup> <sub>1</sub> )                               | > 3.1×10 <sup>20</sup>              | [4]  | HPGe                |  |
| Collaboration at Frejus, (France)               | $^{96}$ Zr $\rightarrow$ $^{96}$ Mo (2 $^{+}_{1}$ , 0 $^{+}_{1}$ , 2 $^{+}_{2}$ , 2 $^{+}_{3}$ ) | > (2.6 – 7.9) ×10 <sup>19</sup>     | [5]  | HPGe                |  |
| Collaboration at LNGS                           | $^{96}\text{Zr} \rightarrow ^{96}\text{Mo (2}^{+}_{1})$                                          | > 3.8×10 <sup>19</sup>              | [6]  | HPGe                |  |
| Collaboration at LNGS                           | $^{94}\text{Zr} \rightarrow ^{94}\text{Mo (2}^{+}_{1})$                                          | > 2.1×10 <sup>20</sup>              | [7]  | HPGe                |  |
| TILES (TIFR, Mumbai)                            | $^{94}\text{Zr} \rightarrow ^{94}\text{Mo (2}^{+}_{1})$                                          | > 5.2×10 <sup>19</sup>              | [8]  | HPGe                |  |
| Kimballton Underground Research Facility (USA)  | <sup>96</sup> Zr → <sup>96</sup> Mo (6⁺)                                                         | > 2.4×10 <sup>19</sup>              | [9]  | HPGe                |  |





[1] EPS-HEP (2019) 437

[2] NPA 847 (2010) 168

[3] PhD U. Coll. London (2015)

[4] S.W. Finch et W. Tornow, Phys, Rev. C 92 (2015) 045501

[5] J. Phys. G: Nucl. Part. Phys. 22 (1996) 487

[6] C. Arpesella et al. Lett. 27 (I) (1994) 29

[7] E.Celi et al., Eur. Phys. J. C 83 (2023) 396

[8] N. Dokania et al. J. Phys. G: Nucl. Part. Phys. 45 (2018) 075104

[9] S.W. Finch, W. Tornow, Nucl. Inst. Meth. A 806 (2016) 70

[10] J. Heeck and W. Rodejohann, EPL 103 (2013) 32001

#### Cs<sub>2</sub>ZrCl<sub>6</sub>: a novel crystal scintillator

| Some general properties               | Cs <sub>2</sub> ZrCl <sub>6</sub> |
|---------------------------------------|-----------------------------------|
| Effective atomic number               | 46.6                              |
| Density (g/cm³)                       | 3.4                               |
| Melting point (°C)                    | 850                               |
| Crystal structure                     | Cubic                             |
| Emission maximum (nm)                 | 450 - 470                         |
| Scintillation time constants (µs)     | 0.4; 2.7; 12.5*                   |
| Light Yield                           | up to 41000 photons/MeV**         |
| Linearity of the energy response      | Excellent, down to 100 keV        |
| Energy resolution (FWHM, %) @ 662 keV | 3.5 - 7.0***                      |
| Pulse-shape discrimination ability    | Excellent                         |
| Mass fraction of Zr (%)               | 16                                |

<sup>\*</sup> for alpha events at room temperature (Dalton Trans. 2022, 51, 6944-6954)

Produced at Queen's University

CsCl (99.9%) +

ZrCl<sub>4</sub> (99.9%) double sublimed

Bridgman growth technique



 $\emptyset$ 21.5×60 mm, about 60 g

were subjected to further studies

<sup>\*\*</sup> for gamma quanta at room temperature (article in press)

<sup>\*\*\*</sup> depends on the crystal quality, surface treatment and readout system

#### Chemical purity of reagents at the each production stage

HR-ICP-MS, concentrations are in ppb with 25% uncertainty

|                      | CsCl<br>initial | ZrCl <sub>4</sub><br>initial | ZrCl <sub>4</sub> 1st sublimation | ZrCl <sub>4</sub> 2nd sublimation | CZC<br>1st growth,<br>tail | CZC<br>1st growth,<br>nose | CZC<br>2st growth,<br>middle |
|----------------------|-----------------|------------------------------|-----------------------------------|-----------------------------------|----------------------------|----------------------------|------------------------------|
| K                    | 300             | 15000                        | 700                               | 700                               | 2500                       | 200                        | 500                          |
| La                   | 0.7             | 1.5                          | 1                                 | 1                                 | 1                          | 0.6                        | 0.6                          |
| Ce                   | 1.5             | 2                            | 1                                 | 1                                 | 2.5                        | 3                          | 2                            |
| Pr                   | 0.1             | 4                            | 6                                 | 6                                 | 1.5                        | 1                          | 1                            |
| Nd                   | <1              | 30                           | 25                                | 30                                | 5                          | 3                          | 3                            |
| Sm                   | 0.5             | 1                            | 4                                 | 1                                 | 1                          | 0.6                        | 0.6                          |
| Eu-Lu                | <0.5            | <0.5                         | <0.5                              | <0.5                              | <0.5                       | <0.5                       | <0.5                         |
| Hf                   | 35              | 6400                         | 5200                              | 5600                              | 1200                       | 1800                       | 1600                         |
| Ta, W, Re,<br>Os, Ir | <2              | <2                           | <2                                | <2                                | <2                         | <2                         | <2                           |
| Pt                   | <1              | <100                         | <100                              | <100                              | <25                        | <25                        | <25                          |
| TI                   | 0.4             | <0.2                         | <0.2                              | 0.2                               | 1                          | <0.2                       | <0.2                         |
| Pb                   | <1              | 30                           | 20                                | 30                                | 150                        | 1                          | 13                           |
| Bi                   | <0.5            | <0.5                         | 1.5                               | 2.6                               | 1.5                        | <0.5                       | 1.6                          |
| Th                   | < 0.05          | 70                           | 0.5                               | 0.2                               | < 0.05                     | < 0.05                     | <0.05                        |
| U                    | <0.05           | 1000                         | 7                                 | 0.36                              | 0.35                       | 0.13                       | <0.05                        |

## Cs<sub>2</sub>ZrCl<sub>6</sub> crystal radiopurity

over 700 hours of low-background measurements on HPGe detector (STELLA facility, LNGS)

| Court of a                  | Activity, mBq/kg |                | Nuclide            | Chain             |
|-----------------------------|------------------|----------------|--------------------|-------------------|
| Surface cross-contamination | Cylinder         | Cone           |                    |                   |
| during the sample           | 23.95 g          | <b>10.63</b> g |                    |                   |
| preparation                 | < 23             | < 16           | <sup>228</sup> Ra  | <sup>232</sup> Th |
|                             | < 8.2            | < 6.7          | <sup>228</sup> Th  |                   |
|                             | < 8.7            | 60(10)         | <sup>226</sup> Ra  | <sup>238</sup> U  |
| Natural                     | < 260            | < 180          | <sup>234</sup> Th  |                   |
|                             | < 160            | < 630          | <sup>234m</sup> Pa |                   |
|                             | < 12             | < 16           | <sup>235</sup> U   | <sup>235</sup> U  |
|                             | < 95             | < 120          | <sup>40</sup> K    |                   |
| Artificial                  | < 1.6            | < 7.1          | <sup>137</sup> Cs  | Only              |
| Cosmogenic                  | 42(5)            | 49(6)          | <sup>134</sup> Cs  | rtation!          |
| activation                  | < 11             | < 8.2          | <sup>132</sup> CS  | 2 years           |

Our crystals are rather clean, even if they were grown from 99.9% purity grade raw materials

#### Low-background measurements at LNGS (Italy)

#### DAMA/CRYS low-background setup at LNGS





4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000

Cone FWHM = 4.1% @ 2.6MeV

Cylinder FWHM = 6.8% @ 2.6MeV

- OFHC Cu (15 cm)
- Low-activity Pb (20 cm)
- HDPE (5 cm)
- Borated HDPE (5cm)

Run 1: 456.5 days of data taking (time-window 80 μs), June 2021 - June 2022

Run 2: 65 days of data taking (extended time-window for t-A analysis, 2 ms), Oct-Dec 2022

## Pulse-shape discrimination ability



The difference in scintillation pulse time profile for different type of particles allows for an effective pulse-shape discrimination.

The "mean-time" ( $\langle t \rangle$ ) method [1] was used, and this parameter was determined according to:

$$\langle t \rangle = \sum f(t_k) t_k / \sum f(t_k)$$

where the sum is over the time channels (k), starting from the origin of pulse up to 24  $\mu$ s, f(t) is the digitized amplitude (at the time t) of a given signal

Mean-time for the presented pulses are:

 $\langle t \rangle$  = 7.07 and 8.00 µs, for alpha and beta/gamma events respectively

## Pulse-shape discrimination and background $\alpha$ event selection



#### **Time-Amplitude analysis**



Run 2: 65 days of data taking within Oct-Dec 2022 (extended time-window 2 ms)

To select the sequence of alpha events in <sup>235</sup>U sub-chain:

223Ra (
$$Q_{\alpha}$$
 = 5979 keV,  $T_{1/2}$  = 11.44 d) 39.28% selection eff.  
219Rn ( $Q_{\alpha}$  = 6946 keV,  $T_{1/2}$  = 3.96 s)  
215Po ( $Q_{\alpha}$  = 7526 keV,  $T_{1/2}$  = 1.782 ms)

- + Confirmation of <sup>235</sup>U decay chain presence
- + Alpha peaks to precisely determine  $\alpha/\beta$  ratio

#### **Background model**



#### $\alpha/\beta$ ratio:

Cone:  $0.2113(14) + 0.02607(27) \times E_{\alpha}$  [MeV] Cylinder:  $0.2109(19) + 0.02491(20) \times E_{\alpha}$  [MeV]

Contribution of external gammas from PMT's is dominant

| Chain             | Nuclide           | Internal contamination,<br>mBq/kg |          |  |
|-------------------|-------------------|-----------------------------------|----------|--|
|                   |                   | Cone                              | Cylinder |  |
| <sup>232</sup> Th | <sup>232</sup> Th | 0.07(2)                           | 0.28(7)  |  |
|                   | <sup>228</sup> Th | 0.05(2)                           | 0.44(4)  |  |
| <sup>235</sup> U  | <sup>235</sup> U  | 0.29(4)                           | 3.0(1)   |  |
|                   | <sup>231</sup> Pa | 21.0(3)                           | 33.9(3)  |  |
|                   | <sup>227</sup> Ac | 0.70(3)                           | 1.08(3)  |  |
| <sup>238</sup> U  | <sup>238</sup> U  | 0.53(4)                           | 1.17(5)  |  |
|                   | <sup>234</sup> U  | 0.2(1)                            | 3.8(1)   |  |
|                   | <sup>230</sup> Th | 0.23(7)                           | < 0.02   |  |
|                   | <sup>226</sup> Ra | 0.03(3)                           | 0.12(3)  |  |
|                   | <sup>210</sup> Pb | 2.2(2)                            | 6.7(3)   |  |
|                   | <sup>40</sup> K   | 6(1)                              | 5(1)     |  |
|                   | <sup>134</sup> Cs | 36(4)                             | 42(2)    |  |
|                   | <sup>135</sup> Cs | 267(4)                            | 289(2)   |  |

- Comply with measurements on HPGe
- High contamination by <sup>235</sup>U daughters
- Segregation of impurities is observed

## Experimental limits on various decay modes in 94,96Zr isotopes



| 10-2             | 500  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000 | 2500                | 3000                           | 3500 |
|------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------|--------------------------------|------|
|                  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     | Energy (                       | keV) |
| Events/10 keV    | ^ -  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cyli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nder | Bacl                | spectrum<br>kground mode       |      |
| ents             | · VI |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     | 0ν2β (g.s.→g.<br>2ν2β (g.s.→g. |      |
| Ā .              | No.  | Samuel March |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | <sup>94</sup> Zr    | 0ν2β (g.s.→g.                  | s.)  |
| 10 <sup>2</sup>  |      | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The state of the s | +1   | —— <sup>94</sup> Zr | 2v2β (g.s.→g.                  | s.)  |
| 10               |      | $\wedge$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | " <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                     |                                |      |
| 1                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     |                                |      |
| 10 <sup>-1</sup> |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     |                                |      |
| 10 <sup>-2</sup> | 500  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000 | 2500                | 3000                           | 3500 |
|                  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     | Energy (                       | keV) |

| Transition                                  | Decay<br>mode | Final state of daughter nucleus, keV | Experimental limit on T <sub>1/2</sub> at 90%C.L., yr |
|---------------------------------------------|---------------|--------------------------------------|-------------------------------------------------------|
| $^{96}\text{Zr} \rightarrow ^{96}\text{Mo}$ | 2β0ν          | g.s.                                 | > 1.5×10 <sup>20</sup>                                |
|                                             |               | 2 <sub>1</sub> +, 778                | > 1.5×10 <sup>19</sup>                                |
|                                             | 2β2ν          | g.s.                                 | > 7.4×10 <sup>17</sup>                                |
|                                             |               | 2 <sub>1</sub> +, 778                | > 3.8×10 <sup>17</sup>                                |
|                                             | β             | g.s.                                 | > 1.0×10 <sup>17</sup>                                |
| $^{94}\text{Zr} \rightarrow ^{94}\text{Mo}$ | 2β0ν          | g.s.                                 | > 2.6×10 <sup>19</sup>                                |
|                                             |               | 2 <sub>1</sub> +, 871                | > 3.8×10 <sup>18</sup>                                |
|                                             | 2β2ν          | g.s.                                 | > 2.4×10 <sup>18</sup>                                |
|                                             |               | 2 <sub>1</sub> +, 871                | > 1.9×10 <sup>17</sup>                                |

See more details in **Eur. Phys. J. A 59 (2023) 176** https://doi.org/10.1140/epja/s10050-023-01090-9

#### New low-background measurements in DAMA/CRYS setup



- Three new Cs<sub>2</sub>ZrCl<sub>6</sub> crystals (more crystals are under production)
- Total mass = 59.5 g
- FWHM = 6-8% @ 662keV
- Produced from high purity and purified raw materials (> 99.99%)
- Crystals are encapsulated in a silicon-base resin + quartz window
- Modified experimental setup
- Measurements started in June 30th, 2023



# Final detector array schematic $(T_{1/2} > 10^{22} \text{ yr})$





Low-background setup, schematic view

#### Four separate detector's modules, each consist of:

- (1) CZC  $\varnothing$  21×21 mm<sup>3</sup>
- (2) Plastic scintillator block roughly 200×200×300 mm<sup>3</sup>
- (3) Quartz light guide  $\varnothing$  25×(100-150) mm<sup>3</sup>
- (4) 2" ultra-low-background PMTs

- (5) OFHC Cu, 15 cm
- (6) Pb, 20 cm
- (7) HDPE, 10 cm
- (8)  $4\pi$  muon veto

#### **Summary**

- First experiment based on  $Cs_2ZrCl_6$  scintillating crystals aiming to study  $2\beta$  decay processes of  $^{94,96}Zr$  isotopes within the "source = detector" approach was successfully realized
- Despite a very limited mass of the  $Cs_2ZrCl_6$  detector (about 35 g) the experimental limits were established at the level of  $10^{17}$ – $10^{20}$  yr, depending on the decay mode
- A new experiment is ongoing with new Cs<sub>2</sub>ZrCl<sub>6</sub> crystals (59.5 g) in an optimized geometry aiming to reach experimental sensitivity more than 10<sup>21</sup> yr
- Extensive studies of  $\mathrm{Cs_2ZrCl_6}$  crystal scintillating performance, non-proportionality, internal and cosmogenically induced background, crystal lattice characteristics and phonon propagation properties, material handling and machining are on-going
- Cs<sub>2</sub>ZrCl<sub>6</sub> crystal scintillators provide an unique opportunity to study rare decays of Zr isotopes with an ultimate experimental sensitivity

#### Simulated response functions of CZC crystals to DBD processes



# Simulated response functions of CZC crystals to single $\beta$ decay of $^{96}$ Zr

