New prospects in the search for 0ν2β decay of ⁹⁶Zr P. Belli^{a,b}, R. Bernabei^{a,b}, F. Cappella^{c,d}, V. Caracciolo^{a,b}, R. Cerulli^{a,b}, A. Incicchitti^{c,d}, M. Laubenstein^e, A. Leoncini^{a,b}, V. Merlo^{a,b}, <u>S.S. Nagorny</u>^{f,g}, V.V. Nahorna^h, S. Nisi^e, P. Wang^h ``` ^aDipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy ^bINFN, sezione di Roma "Tor Vergata", Rome, Italy ^cINFN, sezione di Roma, Rome, Italy ^dDipartimento di Fisica, Università di Roma "La Sapienza", Rome, Italy ^eINFN Laboratori Nazionali del Gran Sasso, Assergi, Italy ^fDepartment of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Canada ^gArthur B. McDonald Canadian Astroparticle Physics Research Institute, Kingston, Canada ^hDepartment of Chemistry, Queen's University, Kingston, Canada ``` # Walking through the forest of 2β giants... Over the past 20 years, impressive progress has been achieved in the search for $0v2\beta$ decay | GERDA, ⁷⁶Ge Phys. Rev. Lett. 125 (2020) 252502 | $T_{1/2} > 1.8 \times 10^{26} \text{ yr}$ | |---|---| | KamLAND-Zen, ¹³⁶ Xe
Phys. Rev. Lett. 117 (2016) 082503 | $T_{1/2} > 1.1 \times 10^{26} \text{ yr}$ | | EXO-200, ¹³⁶Xe <i>Phys. Rev. Lett. 123 (2019)161802</i> | $T_{1/2} > 3.5 \times 10^{25} \text{ yr}$ | | MAJORANA Dem., ⁷⁶ Ge
Phys. Rev. C 100 (2019) 025501 | $T_{1/2} > 2.7 \times 10^{25} \text{ yr}$ | | CUORE, ¹³⁰Te
arXiv:2011.09295v2 | $T_{1/2} > 3.2 \times 10^{25} \text{ yr}$ | | CUPID-0, ⁸²Se <i>Phys. Rev. Lett. 129 (2022) 111801</i> | $T_{1/2} > 4.6 \times 10^{24} \text{ yr}$ | | CUPID-Mo, ¹⁰⁰Mo
Eur. Phys. J. C 82 (2022) 1033 | $T_{1/2} > 1.8 \times 10^{24} \text{ yr}$ | | NEMO-3, ¹⁰⁰ Mo <i>Phys. Rev. D 92 (2015) 072011]</i> | $T_{1/2} > 1.1 \times 10^{24} \text{ yr}$ | #### **0ν2**β searches with non-trivial candidates We propose to study $0v2\beta$ of ⁹⁶Zr with novel Cs_2ZrCl_6 scintillators via "source = detector" experimental approach ⁷⁶**Ge,** ¹³⁰**Te,** ¹³⁶**Xe** are facing issues with an internal and environmental gamma background, while profiting from well-developed crystal production and material purification technologies **82Se, ¹⁰⁰Mo, ¹¹⁶Cd** – only ¹⁰⁰Mo is under consideration due to a well-developed detector material and its high radiopurity ⁴⁸Ca, ⁹⁶Zr, ¹⁵⁰Nd are the less studied due to combination of unfavorable experimental conditions specific to each of them - $Q_{66}(^{96}Zr) = 3.35 \text{ MeV}$ - Favorable from a theoretical point of view $T_{1/2} \sim (Q_{66})^5$ - Reasonable natural i.a. (2.8%) - About 15 g of enriched ⁹⁶Zr (55%) could be available - New advanced detector material (Cs₂ZrCl₆) - Crystal production under full control - Extensive studies of the detector properties ## Brief overview of rare decay search in 94,96Zr isotopes | Experiment | Transition | T _{1/2}
@ 90% C.L. (yr) | Ref. | Technique | | |---|--|-------------------------------------|------|---------------------|--| | ZICOS
(Kamioka Observatory,
Japan) | ⁹⁶ Zr → ⁹⁶ Mo (g.s.) | under
construction | [1] | Liquid scintillator | | | NEMO-3 | ⁹⁶ Zr → ⁹⁶ Mo (g.s.) | > 9.2×10 ²¹ | [2] | Tracking detector | | | (Frejus, France) | 21 7 1010 (g.s.) | > 1.29×10 ²² | [3] | | | | Kimballton Underground Research Facility, (USA) | ⁹⁶ Zr → ⁹⁶ Mo (2 ⁺ ₁) | > 3.1×10 ²⁰ | [4] | HPGe | | | Collaboration at Frejus, (France) | 96 Zr \rightarrow 96 Mo (2 $^{+}_{1}$, 0 $^{+}_{1}$, 2 $^{+}_{2}$, 2 $^{+}_{3}$) | > (2.6 – 7.9) ×10 ¹⁹ | [5] | HPGe | | | Collaboration at LNGS | $^{96}\text{Zr} \rightarrow ^{96}\text{Mo (2}^{+}_{1})$ | > 3.8×10 ¹⁹ | [6] | HPGe | | | Collaboration at LNGS | $^{94}\text{Zr} \rightarrow ^{94}\text{Mo (2}^{+}_{1})$ | > 2.1×10 ²⁰ | [7] | HPGe | | | TILES (TIFR, Mumbai) | $^{94}\text{Zr} \rightarrow ^{94}\text{Mo (2}^{+}_{1})$ | > 5.2×10 ¹⁹ | [8] | HPGe | | | Kimballton Underground Research Facility (USA) | ⁹⁶ Zr → ⁹⁶ Mo (6⁺) | > 2.4×10 ¹⁹ | [9] | HPGe | | [1] EPS-HEP (2019) 437 [2] NPA 847 (2010) 168 [3] PhD U. Coll. London (2015) [4] S.W. Finch et W. Tornow, Phys, Rev. C 92 (2015) 045501 [5] J. Phys. G: Nucl. Part. Phys. 22 (1996) 487 [6] C. Arpesella et al. Lett. 27 (I) (1994) 29 [7] E.Celi et al., Eur. Phys. J. C 83 (2023) 396 [8] N. Dokania et al. J. Phys. G: Nucl. Part. Phys. 45 (2018) 075104 [9] S.W. Finch, W. Tornow, Nucl. Inst. Meth. A 806 (2016) 70 [10] J. Heeck and W. Rodejohann, EPL 103 (2013) 32001 #### Cs₂ZrCl₆: a novel crystal scintillator | Some general properties | Cs ₂ ZrCl ₆ | |---------------------------------------|-----------------------------------| | Effective atomic number | 46.6 | | Density (g/cm³) | 3.4 | | Melting point (°C) | 850 | | Crystal structure | Cubic | | Emission maximum (nm) | 450 - 470 | | Scintillation time constants (µs) | 0.4; 2.7; 12.5* | | Light Yield | up to 41000 photons/MeV** | | Linearity of the energy response | Excellent, down to 100 keV | | Energy resolution (FWHM, %) @ 662 keV | 3.5 - 7.0*** | | Pulse-shape discrimination ability | Excellent | | Mass fraction of Zr (%) | 16 | ^{*} for alpha events at room temperature (Dalton Trans. 2022, 51, 6944-6954) Produced at Queen's University CsCl (99.9%) + ZrCl₄ (99.9%) double sublimed Bridgman growth technique \emptyset 21.5×60 mm, about 60 g were subjected to further studies ^{**} for gamma quanta at room temperature (article in press) ^{***} depends on the crystal quality, surface treatment and readout system #### Chemical purity of reagents at the each production stage HR-ICP-MS, concentrations are in ppb with 25% uncertainty | | CsCl
initial | ZrCl ₄
initial | ZrCl ₄ 1st sublimation | ZrCl ₄ 2nd sublimation | CZC
1st growth,
tail | CZC
1st growth,
nose | CZC
2st growth,
middle | |----------------------|-----------------|------------------------------|-----------------------------------|-----------------------------------|----------------------------|----------------------------|------------------------------| | K | 300 | 15000 | 700 | 700 | 2500 | 200 | 500 | | La | 0.7 | 1.5 | 1 | 1 | 1 | 0.6 | 0.6 | | Ce | 1.5 | 2 | 1 | 1 | 2.5 | 3 | 2 | | Pr | 0.1 | 4 | 6 | 6 | 1.5 | 1 | 1 | | Nd | <1 | 30 | 25 | 30 | 5 | 3 | 3 | | Sm | 0.5 | 1 | 4 | 1 | 1 | 0.6 | 0.6 | | Eu-Lu | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | Hf | 35 | 6400 | 5200 | 5600 | 1200 | 1800 | 1600 | | Ta, W, Re,
Os, Ir | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Pt | <1 | <100 | <100 | <100 | <25 | <25 | <25 | | TI | 0.4 | <0.2 | <0.2 | 0.2 | 1 | <0.2 | <0.2 | | Pb | <1 | 30 | 20 | 30 | 150 | 1 | 13 | | Bi | <0.5 | <0.5 | 1.5 | 2.6 | 1.5 | <0.5 | 1.6 | | Th | < 0.05 | 70 | 0.5 | 0.2 | < 0.05 | < 0.05 | <0.05 | | U | <0.05 | 1000 | 7 | 0.36 | 0.35 | 0.13 | <0.05 | ## Cs₂ZrCl₆ crystal radiopurity over 700 hours of low-background measurements on HPGe detector (STELLA facility, LNGS) | Court of a | Activity, mBq/kg | | Nuclide | Chain | |-----------------------------|------------------|----------------|--------------------|-------------------| | Surface cross-contamination | Cylinder | Cone | | | | during the sample | 23.95 g | 10.63 g | | | | preparation | < 23 | < 16 | ²²⁸ Ra | ²³² Th | | | < 8.2 | < 6.7 | ²²⁸ Th | | | | < 8.7 | 60(10) | ²²⁶ Ra | ²³⁸ U | | Natural | < 260 | < 180 | ²³⁴ Th | | | | < 160 | < 630 | ^{234m} Pa | | | | < 12 | < 16 | ²³⁵ U | ²³⁵ U | | | < 95 | < 120 | ⁴⁰ K | | | Artificial | < 1.6 | < 7.1 | ¹³⁷ Cs | Only | | Cosmogenic | 42(5) | 49(6) | ¹³⁴ Cs | rtation! | | activation | < 11 | < 8.2 | ¹³² CS | 2 years | Our crystals are rather clean, even if they were grown from 99.9% purity grade raw materials #### Low-background measurements at LNGS (Italy) #### DAMA/CRYS low-background setup at LNGS 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 Cone FWHM = 4.1% @ 2.6MeV Cylinder FWHM = 6.8% @ 2.6MeV - OFHC Cu (15 cm) - Low-activity Pb (20 cm) - HDPE (5 cm) - Borated HDPE (5cm) Run 1: 456.5 days of data taking (time-window 80 μs), June 2021 - June 2022 Run 2: 65 days of data taking (extended time-window for t-A analysis, 2 ms), Oct-Dec 2022 ## Pulse-shape discrimination ability The difference in scintillation pulse time profile for different type of particles allows for an effective pulse-shape discrimination. The "mean-time" ($\langle t \rangle$) method [1] was used, and this parameter was determined according to: $$\langle t \rangle = \sum f(t_k) t_k / \sum f(t_k)$$ where the sum is over the time channels (k), starting from the origin of pulse up to 24 μ s, f(t) is the digitized amplitude (at the time t) of a given signal Mean-time for the presented pulses are: $\langle t \rangle$ = 7.07 and 8.00 µs, for alpha and beta/gamma events respectively ## Pulse-shape discrimination and background α event selection #### **Time-Amplitude analysis** Run 2: 65 days of data taking within Oct-Dec 2022 (extended time-window 2 ms) To select the sequence of alpha events in ²³⁵U sub-chain: 223Ra ($$Q_{\alpha}$$ = 5979 keV, $T_{1/2}$ = 11.44 d) 39.28% selection eff. 219Rn (Q_{α} = 6946 keV, $T_{1/2}$ = 3.96 s) 215Po (Q_{α} = 7526 keV, $T_{1/2}$ = 1.782 ms) - + Confirmation of ²³⁵U decay chain presence - + Alpha peaks to precisely determine α/β ratio #### **Background model** #### α/β ratio: Cone: $0.2113(14) + 0.02607(27) \times E_{\alpha}$ [MeV] Cylinder: $0.2109(19) + 0.02491(20) \times E_{\alpha}$ [MeV] Contribution of external gammas from PMT's is dominant | Chain | Nuclide | Internal contamination,
mBq/kg | | | |-------------------|-------------------|-----------------------------------|----------|--| | | | Cone | Cylinder | | | ²³² Th | ²³² Th | 0.07(2) | 0.28(7) | | | | ²²⁸ Th | 0.05(2) | 0.44(4) | | | ²³⁵ U | ²³⁵ U | 0.29(4) | 3.0(1) | | | | ²³¹ Pa | 21.0(3) | 33.9(3) | | | | ²²⁷ Ac | 0.70(3) | 1.08(3) | | | ²³⁸ U | ²³⁸ U | 0.53(4) | 1.17(5) | | | | ²³⁴ U | 0.2(1) | 3.8(1) | | | | ²³⁰ Th | 0.23(7) | < 0.02 | | | | ²²⁶ Ra | 0.03(3) | 0.12(3) | | | | ²¹⁰ Pb | 2.2(2) | 6.7(3) | | | | ⁴⁰ K | 6(1) | 5(1) | | | | ¹³⁴ Cs | 36(4) | 42(2) | | | | ¹³⁵ Cs | 267(4) | 289(2) | | - Comply with measurements on HPGe - High contamination by ²³⁵U daughters - Segregation of impurities is observed ## Experimental limits on various decay modes in 94,96Zr isotopes | 10-2 | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | |------------------|------|--|--|------|---------------------|--------------------------------|------| | | | | | | | Energy (| keV) | | Events/10 keV | ^ - | | Cyli | nder | Bacl | spectrum
kground mode | | | ents | · VI | | | | | 0ν2β (g.s.→g.
2ν2β (g.s.→g. | | | Ā . | No. | Samuel March | | | ⁹⁴ Zr | 0ν2β (g.s.→g. | s.) | | 10 ² | | 500 | The state of s | +1 | —— ⁹⁴ Zr | 2v2β (g.s.→g. | s.) | | 10 | | \wedge | " | | | | | | 1 | | | | | | | | | 10 ⁻¹ | | | | | | | | | 10 ⁻² | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | | | | | | | | Energy (| keV) | | Transition | Decay
mode | Final state of daughter nucleus, keV | Experimental limit on T _{1/2} at 90%C.L., yr | |---|---------------|--------------------------------------|---| | $^{96}\text{Zr} \rightarrow ^{96}\text{Mo}$ | 2β0ν | g.s. | > 1.5×10 ²⁰ | | | | 2 ₁ +, 778 | > 1.5×10 ¹⁹ | | | 2β2ν | g.s. | > 7.4×10 ¹⁷ | | | | 2 ₁ +, 778 | > 3.8×10 ¹⁷ | | | β | g.s. | > 1.0×10 ¹⁷ | | $^{94}\text{Zr} \rightarrow ^{94}\text{Mo}$ | 2β0ν | g.s. | > 2.6×10 ¹⁹ | | | | 2 ₁ +, 871 | > 3.8×10 ¹⁸ | | | 2β2ν | g.s. | > 2.4×10 ¹⁸ | | | | 2 ₁ +, 871 | > 1.9×10 ¹⁷ | See more details in **Eur. Phys. J. A 59 (2023) 176** https://doi.org/10.1140/epja/s10050-023-01090-9 #### New low-background measurements in DAMA/CRYS setup - Three new Cs₂ZrCl₆ crystals (more crystals are under production) - Total mass = 59.5 g - FWHM = 6-8% @ 662keV - Produced from high purity and purified raw materials (> 99.99%) - Crystals are encapsulated in a silicon-base resin + quartz window - Modified experimental setup - Measurements started in June 30th, 2023 # Final detector array schematic $(T_{1/2} > 10^{22} \text{ yr})$ Low-background setup, schematic view #### Four separate detector's modules, each consist of: - (1) CZC \varnothing 21×21 mm³ - (2) Plastic scintillator block roughly 200×200×300 mm³ - (3) Quartz light guide \varnothing 25×(100-150) mm³ - (4) 2" ultra-low-background PMTs - (5) OFHC Cu, 15 cm - (6) Pb, 20 cm - (7) HDPE, 10 cm - (8) 4π muon veto #### **Summary** - First experiment based on Cs_2ZrCl_6 scintillating crystals aiming to study 2β decay processes of $^{94,96}Zr$ isotopes within the "source = detector" approach was successfully realized - Despite a very limited mass of the Cs_2ZrCl_6 detector (about 35 g) the experimental limits were established at the level of 10^{17} – 10^{20} yr, depending on the decay mode - A new experiment is ongoing with new Cs₂ZrCl₆ crystals (59.5 g) in an optimized geometry aiming to reach experimental sensitivity more than 10²¹ yr - Extensive studies of $\mathrm{Cs_2ZrCl_6}$ crystal scintillating performance, non-proportionality, internal and cosmogenically induced background, crystal lattice characteristics and phonon propagation properties, material handling and machining are on-going - Cs₂ZrCl₆ crystal scintillators provide an unique opportunity to study rare decays of Zr isotopes with an ultimate experimental sensitivity #### Simulated response functions of CZC crystals to DBD processes # Simulated response functions of CZC crystals to single β decay of 96 Zr