

Progress of double-weak decays and solar pp neutrinos in PandaX-4T experiment

Xiang Xiao (Sun Yat-sen University) on behalf of the PandaX Collaboration

August 29, 2023

TAUP2023 @ Vienna

PandaX-4T experiment

- ➤ Third generation of the PandaX experiments located at CJPL-II
- ➤ Dual-phase Xe TPC: 1.2 m (D) ×1.2 m (H)
- > Sensitive volume: 3.7 ton LXe
- Total volume: 5.6 ton LXe
- > 3-inch PMTs: 169 top / 199 bottom
- \triangleright Water shielding: 10 m (D) ×13 m (H)

- > ER/NR identification
- ➤ 3D position reconstruction and fiducialization
- ➤ Monolithic and scalable
- > Calorimeter from sub keV to a few MeV

Multiple physics in a wide energy range

Extending from keV to MeV

Dedicated data analysis pipeline is developed for O(100 keV)

- -O(MeV) energy range
- ➤ Improved single site (SS) and multiple site (MS) identification: calibration data/MC SS ratio consistent within 1.7%
- ➤ Desaturation algorithm: X-Y position reconstruction, energy linearity and resolution significantly improved

Bench test for saturation and new PMT base design

- ➤ PMT waveform saturation is studied by independent bench tests
- Desaturation algorithm is checked and verified

- ➤ New PMT base design with much improved linearity
- ➤ All PMT bases have been changed for the upcoming Run2

Segmented FV and simultaneous

- ➤ Material components are grouped into Top, Bottom and Side categories, each with ⁶⁰Co, ⁴⁰K, ²³⁸U and ²³²Th.
- > FV is optimized based on both background level and position reconstruction non-linearity, then segmented into four regions.
- > Binned Poisson likelihood fitting on SS energy spectrum is performed simultaneously in four regions.
- ➤ Outer regions are used to check material background model, and data-MC is consistent at 1% level.

¹³⁶Xe 2νββ half-life and background model

¹³⁶Xe 2νββ half-life measured as: 2.27 ± 0.03 (stat.) ± 0.10 (syst.) $\times 10^{21}$ year

- > Comparable precision with leading results
- First such measurement from a DM detector with natural xenon
- ➤ Much lower analysis threshold compared with previous measurements
- "in-situ" material background fitting results compatible and more precise than HPGe assay

¹²⁴Xe 2vECEC half-life measurement

$$(A,Z) + 2e^- \to (A,Z-2) + (2\nu_e)$$

XENONnT recent result: $T_{1/2}$ =(1.18 ± 0.13_{stat} ± 0.14_{sys}) × 10²² yr PRL 129, 161805 (2022)

- to likelihood fitting
- > Use commissioning Run0 open data to develop the method
- \geq ¹²⁴Xe abundance measured as (0.100±0.001)%, larger than the natural abundance by $\sim 5\%$

Energy spectrum + time evolution likelihood fit

- > Two fits were performed on Run0 open data for consistency check:
 - ☐ unbinned 2-dimentional fit on parameter space of (energy, time)
 - ☐ binned simultaneous fit on energy + time
- Fitting results are more precise compared to the fit on energy spectrum only
- ➤ Commissioning Run0 + Science Run1 blind analysis on-going

Energy spectrum + time evolution likelihood fit

neutron cali.

- > Two fits were performed on Run0 open data for consistency check:
 - ☐ unbinned 2-dimentional fit on parameter space of (energy, time)
 - □ binned simultaneous fit on energy + time
- > Fitting results are more precise compared to the fit on energy spectrum only
- ➤ Commissioning Run0 + Science Run1 blind analysis on-going

Search for solar pp + ⁷Be neutrinos

- ➤ Binding energy of electron shell of xenon atoms has been taken into account when generating the recoiled electron energy spectrum.
- > Commissioning Run0, excluding ~10-day data right after neutron calibrations to avoid high ¹³³Xe concentration.
- > Same FV as of our first WIMP search, with optimized energy reconstruction.

Search for solar pp + ⁷Be neutrinos

- ➤ Binding energy of electron shell of xenon atoms has been taken into account when generating the recoiled electron energy spectrum.
- > Commissioning Run0, excluding ~10-day data right after neutron calibrations to avoid high ¹³³Xe concentration.
- > Same FV as of our first WIMP search, with optimized energy reconstruction.

²¹⁴Pb spectrum fitting on ²²²Rn calibration data

- ➤ Dedicated ²²²Rn calibration campaign was carried out to measure ²¹⁴Pb spectrum *in-situ*.
- ≥ ²²²Rn activity ~1 mBq/kg, 100x higher than science data.
- Fit was performed with ²¹⁴Pb decay branching ratios floating.
- ➤ Measured ²¹⁴Pb spectrum is then used in the fit on science data to estimate ²¹⁴Pb level.

²¹⁴Pb spectrum fitting on ²²²Rn calibration data

- ➤ Dedicated ²²²Rn calibration campaign was carried out to measure ²¹⁴Pb spectrum *in-situ*.
- ≥ ²²²Rn activity ~1 mBq/kg, 100x higher than science data.
- Fit was performed with ²¹⁴Pb decay branching ratios floating.
- ➤ Measured ²¹⁴Pb spectrum is then used in the fit on science data to estimate ²¹⁴Pb level.

Preliminary solar pp + ⁷Be neutrinos measurement

ROI chosen as [24, 144] keV

Constrained from higher energy fits or dedicated studies:

- Pb214 (10% constraint)
- Material (12.5% constraint)
- 136 Xe $2\nu\beta\beta$ (4.6% constraint)
- ⁸⁵Kr (51% constraint)

Float:

- 35 keV single gaussian peak (127 Xe + 124 Xe + 125 I)
- 65 keV single gaussian peak (124Xe + 125I)
- 133Xe (simulated spectrum)

Solar pp + ⁷Be neutrinos sensitivity for the future

- PandaX-4T: ²²²Rn ~3.5 uBq/kg, ⁸⁵Kr ~0.25 ppt, with uncertainty <5%
- => pp solar neutrino flux measurement uncertainty: ~28% @ 6 ton·year
- PandaX-xT: 222 Rn \sim 0.5 uBq/kg, 85 Kr \sim 0.01 ppt, with uncertainty <2%
 - => pp solar neutrino flux measurement uncertainty:

<10% @ 8 ton·year

PandaX-xT: multi-ten ton liquid xenon project at CJPL-II

Summary

- ➤ PandaX-4T has extended the energy range from keV to MeV with dedicated analysis pipeline and calibration campaign, and therefore extended the physics reach from DM to neutrino.
- > 136Xe 2νββ half-life is precisely measured for the first time by a natural xenon detector, with much lower analysis threshold and robust background control, demonstrating the physics potential of large liquid xenon TPC on multiple fronts.
- > pp solar neutrino flux is being measured with recoil energy below 190 keV for the first time.
- \triangleright On-going analysis of double-weak decays: ¹²⁴Xe 2νECEC, ¹³⁴Xe 2νββ / 0νββ, ¹³⁶Xe 0νββ, etc.

