R&D Status of Selena

The Selena Neutrino Experiment

A.E. Chavarria,¹ C. Galbiati,^{2,3,4} B. Hernandez-Molinero,⁵ Al. Ianni,³ X. Li,⁶ Y. Mei,⁷ D. Montanino,^{8,9} X. Ni,¹ C. Peña Garay,^{5,10} A. Piers,¹ and H. Wang¹¹

White paper: arXiv:2203.08779

Backgrounds in imaging detectors: arXiv:2212.05012

Original paper: arXiv:1609.03887

Outline

- Selena concept.
- Neutrinoless $\beta\beta$ decay.
- R&D goals.
- Past R&D results.
- Upcoming developments.

Selena

- ▶ 10-ton enriched 82Se active target with exquisite spatial resolution for signal identification.
- ► Large-area hybrid CMOS imagers with ~5-mm thick layers of amorphous 82Se (a82Se).
- Leverages the existing industrial capabilities on CMOS fabrication and aSe deposition for scalability.
- Zero-background $\beta\beta$ decay and solar neutrino spectroscopy in 100-ton year exposure.

Selena BB

JINST12 (2017) P03022

- ► By identification of Bragg peaks, can achieve 10⁻³ suppression of single electron background, with 50% signal acceptance.
- Bulk backgrounds suppressed by α/β particle ID, spatial correlations.

Background rate <6 x 10⁻⁵ /keV/ton/year!

 3σ discovery for $T_{1/2} = 2 \times 10^{28} \text{ y}$ in ⁸²Se

Or study 0νββ mechanism after ton-scale discovery!

Simulation:

ββ backgrounds

Background source	Raw rate / (keV ton y)-1	After disc.
β-decay (bulk)	5.8	6.4 x 10 ⁻⁸
β-decay (surface)	7.1	2.1 x 10 ⁻⁷
β-decay (cosmogenic)	1.7 x 10 ⁻³	2.6 x 10 ⁻⁶
γ-ray (photoelectric)	1.3 x 10 ⁻²	1.3 x 10 ⁻⁵
γ-ray (Compton)	2.8 x 10 ⁻²	7.1 x 10 ⁻⁶
γ-ray (pair production)	3.3 x 10 ⁻⁵	3.3 x 10 ⁻⁶

JINST12 (2017) P03022

Background challenges very different from other experiments

$$Q_{\beta\beta} = 3 \,\mathrm{MeV}$$

• Example U+Th γ :

3000.0 2		0.0086 % 9
3053.9 <i>2</i>		0.0209 % <i>23</i> ◀
3081.79 <i>25</i>		0.0059 % 18
3094.0 4	214 D :	5.9E-4 % 18
3142.6 4	²¹⁴ Bi	0.00123 % 14
3149.0 5		8.6E-5 % 9
3160.7 6		5.5E-4 % 14
3183.6 4		0.00136 % <i>23</i>

Photoelectric absorption 3475.1 0.0015 % 15 3708.4 **208TI** 0.0020 % 20 3960.9 0.0015 % 15

Compton scattering

U+Th γ rays contribute <1 background in ROI every 109 decays (<1 in 100 ton year at 10 ppt)

R&D Goals

Measure ionization response of aSe.

Done!

Demonstrate aSe can be successfully coupled to CMOS pixel array.

Done!

 Optimize CMOS pixel design for Selena: low pixel noise, full charge collection, low power consumption.

In progress

Optimize CMOS readout for scalability: in-pixel digitization.

In progress

• Possible: measurement of time of arrival (TOA) of charge.

Upcoming

Demonstrate large area module with performance for Selena.

Upcoming

JINST16(2021)P06018

aSe response

Pixel Array Readout

Each pixel has its own charge-sensitive amp (CSA) that can be selected for readout

Topmetal II-

Before/After 500um aSe deposition by Hologic Inc.

Start with existing sensor Topmetal II- from LBNL.

VREF

CMOS pixel array with exposed metal electrodes.

- ►83 μ m pixel pitch.
- ►15 e- pixel noise.

NIMA810(2016)144

Performance

Beta Tracks from ⁹⁰Sr

Limitations

Pixel Structure & Collection Efficiency:

Solution: Build our own CMOS pixel array for aSe!

1.6um 1.6um 1.6um 1.6um

0.90 0.85 0.80 0.80

FEA Simulated Collection Efficiency

gring Fraction of HV (%)

0.65

TopmetalSe

First chips arrived this summer!

- Open source design by student Harry Ni on Skywater PDK.
- 15 $\mu {
 m m}$ pitch, high collection efficiency, low power ($< 1 \mu {
 m W}$), low noise.

Already demonstrated noise performance!

TopmetalSe-DPS

- ► Test structure for in-pixel digitization.
- First chips arrive later this year.

Conclusion

- A 10-ton Selena detector has the potential for background-free search for $0\nu\beta\beta$ decay and solar ν spectroscopy.
- Neutrinoless $\beta\beta$ decay sensitivity of $\mathbf{m}_{\beta\beta}$ = 4 to 8 meV (3 σ) in 100-ton year.
- We already fabricated and operated the lowest noise single-pixel and pixelated aSe sensors capable of detecting individual electrons!
- Our own CMOS pixelated sensor TopmetalSe has met all design specifications.
- Steadfast CMOS development to scale up to wafer-size devices.

Thank you!

Backups

ve detection

Solar v spectrum

Constraints on solar luminosity, solar metallicity, solar core temperature, onset of matter effects in ν oscillations, etc.

 v_e + 82Se \longrightarrow 82Br* + e- + C.E. (29 keV) \uparrow E_{ν} - 172 keV

100 ton-year

Species	E range (keV)	N	1/√N
pp	29 - 278	6170	1.3%
⁷ Be	665 - 775	1850	2.3%
pep	1230 - 1360	151	8.1%
CNO	278 - 655 785 - 1220	63	12.6%
8B	(1.5 - 15) x 10 ³	209	6.9%

ve backgrounds

- Expected number of three accidental events in 100 μ m² (22 μg) is <10-4 in 100 ton year.
- Other α , p, or n reactions that make ⁸²Br* have a different prompt event topology.
- No cosmogenic isotope starts a decay chain that mimics the triple sequence.
- Some neutron captures on Se isotopes can give triple sequences but their event topologies are also very different.

No identified background to mimic the triple sequence. Possibility of zero background v spectroscopy!