

First results from the **CUORE** background model

Stefano Ghislandi on behalf of the CUORE collaboration

The CUORE experiment

Cryogenic Underground Observatory for Rare Events

- Searching from neutrinoless double beta decay $(0v\beta\beta)$ in ¹³⁰Te
- Running since 2017 in the **Gran Sasso underground**laboratories in Italy (~ 3600 m.w.e.)
- **988 TeO₂ crystals operated at ~ 15 mK** with natural ¹³⁰Te abundance
- No evidence for neutrinoless double beta decay in ¹³⁰Te
 - → only background (see Talk from K. Alfonso)

The CUORE experiment

Cryogenic Underground Observatory for Rare Events

- Searching from neutrinoless double beta decay $(0v\beta\beta)$ in ¹³⁰Te
- Running since 2017 in the **Gran Sasso underground**laboratories in Italy (~ 3600 m.w.e.)
- **988 TeO₂ crystals operated at ~ 15 mK** with natural ¹³⁰Te abundance
- No evidence for neutrinoless double beta decay in ¹³⁰Te
 - → only background (see Talk from K. Alfonso)

Studying the remaining background is essential to:

- 1. understand the data
- 2. plan a future generation experiment, CUPID in this case

Cryogenic Underground Observatory for Rare Events

- Searching from neutrinoless double beta decay $(0\nu\beta\beta)$ in ¹³⁰Te
- Running since 2017 in the Gran Sassa underground
 - 1. Extract background components activity
 - 2. Evaluate reliable systematic errors
- No e 3. Measure half-lifes $(2\nu\beta\beta ^{130}\text{Te})$

Studying the remaining background is essential to:

- 1. understand the data
- 2. plan a future generation experiment, CUPID in this case

MODEL OF THE BACKGROUND = 1. Data

- 15 datasets
- Total exposure of 1123 kg·yr

- 15 datasets
- Total exposure of 1123 kg·yr

- Exclude noisy periods
 - → Analyzed exposure of 1038 kg·yr
- Quality cuts
- Pulse shape analysis cuts

* Sample topologies

RAW DATA

- 15 datasets
- Total exposure of 1123 kg yr

- Exclude noisy periods
 - → Analyzed exposure of 1038 kg · yr
- Quality cuts
- Pulse shape analysis cuts

COINCIDENCES → space-time cut, optimized for the background model studies

- 15 datasets
- Total exposure of 1123 kg · yr

- Exclude noisy periods
 - → Analyzed exposure of 1038 kg·yr
- Quality cuts
- Pulse shape analysis cuts

COINCIDENCES → space-time cut, optimized for the background model studies

DATA READY FOR THE FIT

MULTIPLICITY 1 (M1) DATA

1. Data 🗸

2. Monte Carlo simulations

The MC templates describe combinations of contaminants and detector components

MC templates

The MC templates describe combinations of contaminants and detector components

Bulk contaminations:

- Main decay chains: ²³²Th, ²³⁸U, ²³⁵U
- Ubiquitous contaminants: ⁴⁰K, ⁶⁰Co
- Fallout: ¹³⁷Cs, ⁹⁰Sr, ²⁰⁷Bi
- Activation: ¹²⁵Sb, ⁵⁴Mn, ^{110m}Ag, ^{108m}Ag
- Others: ¹⁴⁷Sm, ¹⁹⁰Pt (crystal growing)

MC templates

The MC templates describe combinations of contaminants and detector components

Bulk contaminations:

- Main decay chains: ²³²Th, ²³⁸U, ²³⁵U
- Ubiquitous contaminants: ⁴⁰K, ⁶⁰Co
- Fallout: ¹³⁷Cs, ⁹⁰Sr, ²⁰⁷Bi
- Activation: ¹²⁵Sb, ⁵⁴Mn, ^{110m}Ag, ^{108m}Ag
- Others: ¹⁴⁷Sm, ¹⁹⁰Pt (crystal growing)

Surface contaminations:

- Simulation at different depths
- Assumed exponential profile

MC templates

The MC templates describe combinations of contaminants and detector components

Bulk contaminations:

- Main decay chains: ²³²Th, ²³⁸U, ²³⁵U
- Ubiquitous contaminants: ⁴⁰K, ⁶⁰Co
- Fallout: ¹³⁷Cs, ⁹⁰Sr, ²⁰⁷Bi
- Activation: ¹²⁵Sb, ⁵⁴Mn, ^{110m}Ag, ^{108m}Ag
- Others: ¹⁴⁷Sm, ¹⁹⁰Pt (crystal growing)

Surface contaminations:

- Simulation at different depths
- Assumed exponential profile

Muons:

- MACRO flux distribution
- Gran Sasso overburden map

Simulation tool: *qshields* (Geant4 application), the CUORE Monte Carlo framework

OTHER EFFECTS

Data taking

- Dead channels
- Lifetime

Analysis efficiencies

- Base cuts
- Coincidences
- Pulse shape
- Pile-up

Detector effects

- Finite energy resolution
- Lineshape
- Quenching

1. Data 🗸

2. Monte Carlo simulations

Fit model

Binned **template** fit → MC simulations of contaminants in different detector components

Bayesian → Prior to be updated during the regression

With MCMC → Gibbs sampling algorithm (JAGS software)

Model:
$$\langle C_{i,\alpha}^{\mathrm{meas}} \rangle = \sum_{j} N_{j} \langle C_{ij,\alpha}^{\mathrm{MC}} \rangle$$

C = number of counts

N = normalization factor

i = bin

 α = input energy spectrum

j = background component

$$\textit{Likelihood:} \quad \mathcal{L} = \prod_{i,\alpha} \operatorname{Pois}(C_{i,\alpha}^{\operatorname{meas}} | \langle C_{i,\alpha}^{\operatorname{meas}} \rangle) \prod_{j} \operatorname{Pois}(C_{ij,\alpha}^{\operatorname{MC}} | \langle C_{ij,\alpha}^{\operatorname{MC}} \rangle)$$

MULTIPLICITY 1

1 SINGLE SPECTRUM

MULTIPLICITY 1

1 SINGLE SPECTRUM

MULTIPLICITY 2

27 DIFFERENT M2 BANDS

MULTIPLICITY 1

1 SINGLE SPECTRUM

MULTIPLICITY 2

1. Data 🗸

2. Monte Carlo simulations

3. Fit model 🗸

<u>Variable binning</u> to integrate lineshape limited knowledge

Good fit quality all over the energy spectrum

Visual check with thinner binning

All the gamma spectrum features reconstructed

Ideal for precision studies in this region

Assumptions (possible source of systematics)

- Contaminations equal on all the crystals
- Contaminations are simulated uniformly on the shieldings and copper components
- ☐ The background is stable with time

Assumptions (possible source of systematics)

- Contaminations equal on all the crystals
- Contaminations are simulated uniformly on the shieldings and copper components
- ☐ The background is *stable with time*

INCLUDED SYSTEMATICS

→ Binning

20 keV UNIFORM BINNING

Assumptions (possible source of systematics)

- Contaminations equal on all the crystals
- Contaminations are simulated uniformly on the shieldings and copper components
- ☐ The background is stable with time

INCLUDED SYSTEMATICS

- → Binning
- → Low Energy threshold

LOW ENERGY THRESHOLD

Assumptions (possible source of systematics)

- Contaminations equal on all the crystals
- Contaminations are simulated uniformly on the shieldings and copper components
- ☐ The background is stable with time

Repeat the fit to characterize and extract reliable systematic errors

INCLUDED SYSTEMATICS

- → Binning
- → Low Energy threshold
- \rightarrow Time

Assumptions (possible source of systematics)

- Contaminations equal on all the crystals
- Contaminations are simulated uniformly on the shieldings and copper components
- ☐ The background is stable with time

INCLUDED SYSTEMATICS

- → Binning
- → Low Energy threshold
- \rightarrow Time
- → Geometry (Floors, Towers)

GEOMETRY

Assumptions (possible source of systematics)

- Contaminations equal on all the crystals
- Contaminations are simulated uniformly on the shieldings and copper components
- ☐ The background is stable with time

INCLUDED SYSTEMATICS

- → Binning
- → Low Energy threshold
- \rightarrow Time
- → Geometry (Floors, Towers)
- → ⁹⁰Sr contamination

⁹⁰Sr CONTAMINATION

Please Note: Contribution from posterior average

Assumptions (possible source of systematics)

- Contaminations equal on all the crystals
- Contaminations are simulated uniformly on the shieldings and copper components
- ☐ The background is stable with time

Repeat the fit to characterize and extract reliable systematic errors

INCLUDED SYSTEMATICS

- → Binning
- → Low Energy threshold
- \rightarrow Time
- → Geometry (Floors, Towers)
- → ⁹⁰Sr contamination
- \rightarrow Nuclear model (SSD vs HSD) (2 $\nu\beta\beta$ only)

NUCLEAR MODEL

Impacts

Experimental Setup characterization

Fit on the entire energy region

- Better constraints on contaminations
- Lower correlation between background components

Track time varying activities

- Reconstruct initial activity
- Study chain breaking (contamination history)

Non uniformities

- Point-like or localized sources
- Recontaminations

Experimental Setup characterization

Fit on the entire energy region

- Better constraints on contaminations
- Lower correlation between background components

Track time varying activities

- Reconstruct initial activity
- Study chain breaking (contamination history)

Non uniformities

- Point-like or localized sources
- Recontaminations

$2\nu\beta\beta$ half-life measurement

BLINDED HALF-LIFE:

 $2\nu\beta\beta$ systematic uncertainties under finalization

outcome in the form of arbitrary normalization factors

Conclusions and Perspectives

RESULT

- Model of the background defined → stable and reliable fit
- ☐ Good reconstruction in both M1 and M2 multiplicities

WHAT WE CAN DO NOW

- Contamination activities
 - Contamination studies and experimental setup characterization
- \square 2 $\nu\beta\beta$ half-life
 - Half-life measurement
 - Shape studies (SSD, HSD, improved model, exotic physics)

Access to new double beta

decays

- > 128Te first fit (limit)
- → ¹²⁰Te enhanced studies
- Higher multiplicities analyses

HOW TO IMPROVE

- Systematics-limited → ongoing studies on non-uniformities, detector fiducialization, ...
- Going to *lower energies* → lot of interesting physics there
- ☐ Including parallel study on *delayed coincidences*

SAN LUIS OBISPO

Thanks for the attention!

Massachusetts Institute of Technology

Acknowledgment

- We thank the directors and staff of the Laboratori Nazionali del Gran Sasso and the technical staff of our laboratories.
- This work was supported by the Istituto Nazionale di Fisica Nucleare (INFN); the National Science Foundation under grant nos. NSF-PHY-0605119, NSF-PHY-0500337, NSF-PHY-0855314, NSF-PHY-0902171, NSF-PHY-0969852, NSF-PHY-1307204, NSF-PHY-1314881, NSF-PHY-1401832 and NSF-PHY-1913374; and Yale University.
- ☐ This material is also based upon work supported by
 - US Department of Energy (DOE) Office of Science under contract nos. DE-AC02-05CH11231 and DE-AC52-07NA27344;
 - DOE Office of Science, Office of Nuclear Physics under contract nos. DE-FG02-08ER41551, DE-FG03-00ER41138, DE-SC0012654, DE-SC0020423, DE-SC0019316;
 - EU Horizon 2020 research and innovation programme under Marie Skłodowska-Curie Grant agreement no. 754496.
- This research used resources of the National Energy Research Scientific Computing Center (NERSC).
- This work makes use of both the DIANA data analysis and APOLLO data-acquisition software packages, which were developed by the CUORICINO, CUORE, LUCIFER and CUPID-0 collaborations.

BACKUP SLIDES

Double Beta Decay $(2\nu\beta\beta)$

$$\beta^-\beta^ (A,Z) \longrightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$$

 $\beta^+\beta^+$ $(A,Z) \longrightarrow (A,Z-2) + 2e^+ + 2\nu_e$

- 2nd order SM process
- Only even mass number nuclei (i.e. ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe)
- \Box Half-lives in the order of 10^{18} - 10^{21} yr
- Precision measurements of the spectral shape → tests of the nuclear models

Neutrinoless Double Beta Decay $(0\nu\beta\beta)$

WHY IT'S IMPORTANT

- Beyond SM ($\Delta L = 2$)
- Constraints on neutrino mass hierarchy and scale
- Neutrino nature: Majorana / Dirac

THE ENERGY SPECTRUM $\begin{array}{c|c} \hline (E_{e1} + E_{e2})/Q & 1 \end{array}$

THE SENSITIVITY

PARAMETER OF INTEREST

Source ≡ Detector High efficiency

SAMPLE PULSE

The CUORE infrastructure

- Dilution refrigerator with 4μW @ 10 mK cooling power
 - <u>Cryogenics 102 (2019) 9-21</u>
- Radiopurity and mechanical stability constraints
- <u>External decoupling system</u> for vibration isolation
- Pulse Tubes <u>noise active</u>
 <u>cancellation</u> system + linear drives
 - <u>Cryogenics 93, 55-56 (2018)</u>

Analysis chain

Analysis chain

Data binning

E region [keV]	Tag	Bin size [keV] (*)
200 - 2700	γ region	15 (**)
2700 - 7000	α region	40

- (*) A minimum number of 50 events is required in the bin, otherwise merge
- (**) Around characteristic γ lines the bin size is fixed to $5\sigma(E)$ (energy resolution at the energy of the peak) to avoid lineshape-related complications

MULTIPLICITY 1 LINES

MULTIPLICITY 2 LINES

Energy [keV]	Isotope	Energy [keV]	Isotope	Energy [keV]	Isotope	Energy [keV]	Isotope	Energy [keV]	Isotope
238.6	²¹² Pb	768.4	$^{214}\mathrm{Bi}$	1377.7	$^{214}\mathrm{Bi}$	328	$^{228}\mathrm{Ac}$	821.5	⁶⁰ Co (SE)
295.2	²¹⁴ Pb	794.9	^{228}Ac	1460.5	$^{40}\mathrm{K}$	351.9	$^{214}\mathrm{Pb}$	835.7	$^{228}\mathrm{Ac}$
338.3	²²⁸ Ac	803	²¹⁰ Po	1588.2	²²⁸ Ac	409.5	$^{228}\mathrm{Ac}$	911.2	$^{228}\mathrm{Ac}$
351.9	²¹⁴ Pb	834.8	$^{54}\mathrm{Mn}$	1620.5	$^{212}\mathrm{Bi}$	427.9	$^{125}\mathrm{Sb}$	950	40 K (SE)
427.8	$^{125}\mathrm{Sb}$	860.6	²⁰⁸ Tl	1630.6	^{228}Ac	434.2	$^{108\mathrm{m}}\mathrm{Ag}$	969	$^{228}\mathrm{Ac}$
433.9	$^{108\mathrm{m}}\mathrm{Ag}$	911.2	²²⁸ Ac	1729.6	$^{214}\mathrm{Bi}$	511	e+e- annihilation	1120.3	$^{214}\mathrm{Bi}$
463	$^{228}\mathrm{Ac}$	934.1	²¹⁴ Bi	1764.5	$^{214}\mathrm{Bi}$	583.2	²⁰⁸ Tl	1173.2	$^{60}\mathrm{Co}$
511	e+e- annihilation	964	$^{228}\mathrm{Ac}$	1847.4	$^{214}\mathrm{Bi}$	609.3	$^{214}\mathrm{Bi}$	1332.5	⁶⁰ Co
583.2	²⁰⁸ Tl	969	²²⁸ Ac	2103.5	208 Tl (SE)	722.9	$^{110\mathrm{m}}\mathrm{Ag}$	1592.5	²⁰⁸ Tl (DE)
609.3	$^{214}\mathrm{Bi}$	1001	^{234m} Pa	2118.5	$^{214}\mathrm{Bi}$	768.4	²¹⁴ Bi	1764.5	²¹⁴ Bi
614.3	$^{108\mathrm{m}}\mathrm{Ag}$	1063.6	$^{207}\mathrm{Bi}$	2204.1	$^{214}\mathrm{Bi}$	794.9	^{228}Ac	2103.5	²⁰⁸ Tl (SE)
657.7	$^{110\mathrm{m}}\mathrm{Ag}$	1120.3	²¹⁴ Bi	2316.5	$^{147}\mathrm{Sm}$	194.9	Ac	2105.5	11 (512)
665.4	$^{214}\mathrm{Bi}$	1173.2	⁶⁰ Co	2447.9	$^{214}\mathrm{Bi}$				
722.9	$^{108\mathrm{m}}\mathrm{Ag}$	1238.1	$^{214}\mathrm{Bi}$	2505.6	⁶⁰ Co				
727.3	$^{212}\mathrm{Bi}$	1332.5	⁶⁰ Co	2614.5	²⁰⁸ Tl				

Complete MC list

BULK CONTAMINATIONS

Component	Contaminant	Component	Contaminant
Crystals	$^{110m}\mathrm{Ag}$	CuNOSV no TSP	⁴⁰ K
	$^{125}\mathrm{Sb}$	TSP	$^{40}\mathrm{K}$
	$^{147}\mathrm{Sm}$	600mK	²³² Th
	¹⁹⁰ Pt		²³⁸ U
	$^{210}\mathrm{Pb}$		$^{40}\mathrm{K}$
	226 Ra $-^{210}$ Pb		⁶⁰ Co
	$^{228}{ m Ra}-^{208}{ m Pb}$	4K	²³² Th
	²³⁰ Th only	5-004-000	²³⁸ U
	231 Pa $-^{207}$ Pb		$^{40}\mathrm{K}$
	²³² Th only		⁶⁰ Co
	$^{235}U - ^{231}Pa$	Roman Lead	$^{108m}\mathrm{Ag}$
	$^{238}{ m U}$ $-^{230}$ Th		²³² Th
	$^{130}\text{Te} - 2\nu\beta\beta$		238U
	$^{40}\mathrm{K}$	External Lead	²⁰⁷ Bi
	⁶⁰ Co	_	²¹⁰ Bi
CuNOSV	$^{137}\mathrm{Cs}$	Top Lead	$^{210}{ m Bi} - 206Pb$
	²³² Th		²³² Th
	²³⁸ U		238U
	$^{54}\mathrm{Mn}$	Muons	
	⁶⁰ Co	Muons	

SURFACE CONTAMINATIONS

Component	Contaminant	Component	Contaminant
Crystals	$\begin{array}{c} 210 \mathrm{Pb} - 0.001 \mu \mathrm{m} \\ 226 \mathrm{Ra} - ^{210} \mathrm{Pb} - 0.01 \mu \mathrm{m} \\ 228 \mathrm{Ra} - ^{208} \mathrm{Pb} - 0.01 \mu \mathrm{m} \\ 230 \mathrm{Th} \ \mathrm{only} - 0.01 \mu \mathrm{m} \\ 235 \mathrm{U} - ^{207} \mathrm{Pa} - 0.01 \mu \mathrm{m} \\ 232 \mathrm{Th} \ \mathrm{only} - 0.01 \mu \mathrm{m} \\ 235 \mathrm{U} - ^{207} \mathrm{Pa} - 0.01 \mu \mathrm{m} \\ 235 \mathrm{U} - ^{207} \mathrm{Pa} - 0.01 \mu \mathrm{m} \\ 238 \mathrm{U} - ^{200} \mathrm{Th} - 0.01 \mu \mathrm{m} \\ 210 \mathrm{Pb} - 0.1 \mu \mathrm{m} \\ 226 \mathrm{Ra} - ^{210} \mathrm{Pb} - 0.1 \mu \mathrm{m} \\ 228 \mathrm{Ra} - ^{208} \mathrm{Pb} - 0.1 \mu \mathrm{m} \\ 230 \mathrm{Th} \ \mathrm{only} - 0.1 \mu \mathrm{m} \\ \end{array}$	CuNOSV	$\begin{array}{c} 2^{10} \mathrm{Pb} - 1 \mu \mathrm{m} \\ 2^{26} \mathrm{Ra} - 2^{10} \mathrm{Pb} - 1 \mu \mathrm{m} \\ 2^{28} \mathrm{Ra} - 2^{208} \mathrm{Pb} - 1 \mu \mathrm{m} \\ 2^{28} \mathrm{Ra} - 2^{208} \mathrm{Pb} - 1 \mu \mathrm{m} \\ 2^{30} \mathrm{Th} \mathrm{only} - 1 \mu \mathrm{m} \\ 2^{32} \mathrm{Th} \mathrm{only} - 1 \mu \mathrm{m} \\ 2^{32} \mathrm{Th} \mathrm{only} - 1 \mu \mathrm{m} \\ 2^{38} \mathrm{U} - 2^{30} \mathrm{Th} - 1 \mu \mathrm{m} \\ 2^{10} \mathrm{Pb} - 0.01 \mu \mathrm{m} \\ 2^{31} \mathrm{Pa} - 2^{07} \mathrm{Pb} - 0.01 \mu \mathrm{m} \\ 2^{32} \mathrm{Th} - 0.01 \mu \mathrm{m} \\ 2^{35} \mathrm{U} - 2^{31} \mathrm{Pa} - 0.01 \mu \mathrm{m} \\ 2^{38} \mathrm{U} - 0.01 \mu \mathrm{m} \\ 2^{10} \mathrm{Pb} - 0.1 \mu \mathrm{m} \\ 2^{10} \mathrm{Pb} - 10 \mu \mathrm{m} \end{array}$
	$^{232} Th \ only - 0.1 \mu m$ $^{238} U - ^{230} Th - 0.1 \mu m$ $^{210} Pb - 10 \mu m$ $^{226} Ra - ^{210} Pb - 10 \mu m$ $^{228} Ra - ^{208} Pb - 10 \mu m$ $^{230} Th \ only - 10 \mu m$ $^{232} Th \ only - 10 \mu m$ $^{232} Th \ only - 10 \mu m$ $^{238} U - ^{230} Th - 10 \mu m$	50mK 10mK	$^{232} Th - 10 \mu m$ $^{238} U - 10 \mu m$ $^{210} Pb - 1 \mu m$ $^{210} Bi - 0 \mu m$ $^{210} Pb - 0.01 \mu m$ $^{231} Pa - ^{207} Pb - 0.01 \mu m$ $^{232} Th - 0.01 \mu m$ $^{235} U - ^{231} Pa - 0.01 \mu m$ $^{238} U - 0.01 \mu m$

The prior distributions summarize the *a priori* knowledge we have about a certain background components.

The prior distribution can be originated through different measurements:

- Previous experiments:
 - CUORE-0 provides many information about components used also for CUORE
- Radioactive assays:
 - Neutron Activation Analysis
 - HPGe measurements
- Muons:
 - > High multiplicity data

Please Note: In case a contamination doesn't have any dedicated measurement we fix a default uniform prior between 0 and the maximum normalization factor (not to surpass data + fluctuations)

Time varying activities

Few CUORE contaminations (60Co, 125Sb, 210Pb, 54Mn) have an half-life comparable with the experiment live-time

$$A = rac{\sum_{DS} c_{DS}}{\sum_{DS} E_{DS}}$$
 Average activity all along the datasets

$$\tilde{A}(t) = \tilde{A_0}e^{-t/\tau}$$
 Time dependence of the activity (whose average is A)

Initial Activity
$$\tilde{A_0} = \frac{AE_{tot}}{\tau \sum_{DS} \left[e^{-\frac{T_{i,DS}}{\tau}} - e^{-\frac{T_{f,DS}}{\tau}} \right]}$$

CUORE shieldings

EXTERNAL SHIELDING

- ☐ Gran Sasso mountain, 3600 m.w.e
- Lead shield: > 25 cm thick
- Neutrons shield: 18 cm PE + 2 cm H₃BO₃ powder

INTERNAL SHIELDING

- 6 nested copper shields (thermal)
- 6 cm thick Roman lead shield around
- Innermost copper shield made of CuNOSV
- 30 cm thick top lead shield + 6.4 cm CuNOSV

