

Prospects for core-collapse supernova neutrino detection in IceCube-Gen2

Jakob Beise on behalf of the IceCube-Gen2 Collaboration

31 August 2023

IceCube can detect supernova neutrinos

IceCube can detect supernova neutrinos

IceCube-Gen2

[IceCube-Gen2 TDR (2023)]

IceCube-Gen2 improves CCSNe detection by:

- Segmented sensors reduce noise
- More sensorsincrease sensitivity

Segmented sensors can reduce noise

Requiring local coincidences between PMTs of the same sensor efficiently reduces sensor noise

Local coincidences can extend the sensitivity to the entire Milky Way + LMC + SMC

More sensors increase sensitivity

Wavelength shifters improve photon collection

Advantages:

- Low-cost add-on
- Increase photo collection
- Extend acceptance to UV
- Less sensor noise than additional PMTs

Improved photon collection

Improved measurement of the CCSNe signal

Standing Accretion Shock Instability (SASI)

Large-scale, convective streams inside a CCSNe during the accretion phase can cause sloshing

How well can we observe SASI modulations?

Time Domain

Frequency Domain

Test Statistic

IceCube-Gen2+WLS covers the entire galaxy

IceCube-Gen2 + WLS covers 99% of the Galaxy at 5σ as compared to 97% (IceCube-Gen2) and 85% (IceCube).

Conclusion

- IceCube-Gen2 has the unique potential to improve the CCSNe detection capabilities.
- Wavelength shifters are cost-efficient, low-noise modules that are ideal for the precision measurement of CCSNe light curves.
- IceCube-Gen2 with wavelength-shifting modules allows us to detect this SASI model in 99% of the progenitors in the Milky Way (compared to 85% of the Milky Way with IceCube alone).
- In the future we want to generalize this study for model-independent predictions.

Back Up

mDOM local coincidences

[Lozano Mariscal et al. (2021)]

mDOM local coincidences

[Lozano Mariscal et al. (2021)]

detection probability

detection horizon & significance

Fast-time features

