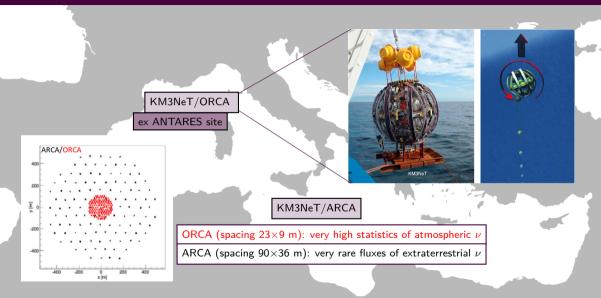
Latest Results with the KM3NeT Neutrino Telescope

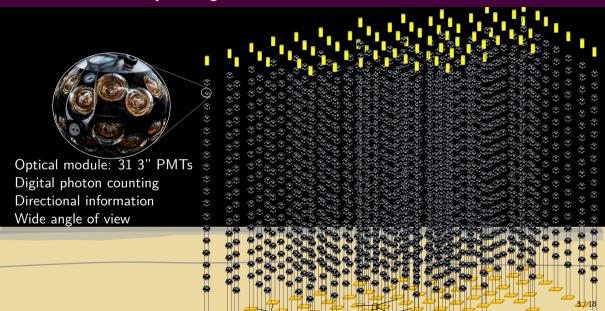
Sara Rebecca Gozzini

on behalf of the KM3NeT Collaboration

Instituto de Física Corpuscular (IFIC), CSIC-UV **TAUP 2023**

August 31, 2023





Neutrino detectors in the Mediterranean Sea

KM3NeT: currently taking data with 21 lines ARCA + 19 lines ORCA

Neutrino astronomy in the making: experimental challenge

Astrophysical ν : atmospheric ν : atmospheric $\mu=1:10^4:10^{10}$

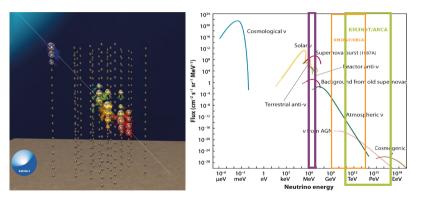
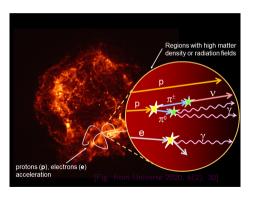
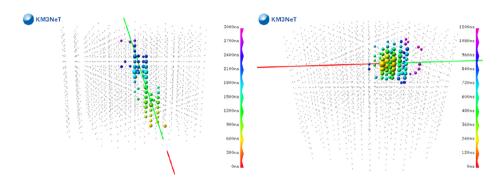



Figure: Left: A muon neutrino candidate recorded with ARCA21 [CERN Courier (2022)]. Right: Fig. adapted from U. Katz and C. Spiering [https://doi.org/10.1016/j.ppnp.2011.12.001]


Physics case 1: extraterrestrial neutrinos

High energy cosmic neutrinos are expected from collisions yielding particles such as π^{\pm} and μ^{\pm} , through pp and $p\gamma$ scattering, taking place in different environments, steady or with flares

- Neutrino astronomy: backtracking sources
 - As a correlation with underlying catalogue
 - Jets of active galactic nuclei (AGNs)
 - Starburst galaxies
 - Tidal disruption events (TDEs)
 - Expanding front of supernova remnants
 - **6** Gamma-ray bursts
 - As autocorrelation or clusters in space (-time)
- Search for a diffuse excess and measurement of its spectrum. Accelerator properties.
- Search for prompt multimessenger coincidences

Performance: pointing

Tracks: predominantly $\nu_{\mu}CC$; angular resolution down to 0.1° at 1 PeV **Showers**: predominantly ν_{e} CC or any NC; angular resolution 1° at 1 PeV

Performance: coverage

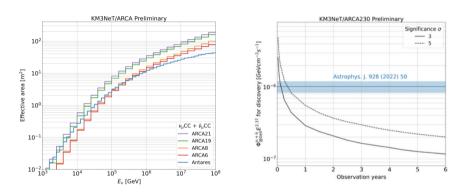
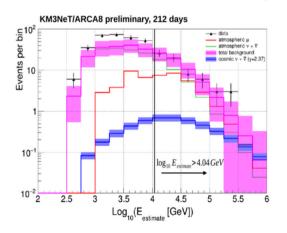



Figure: Left: The current configuration of KM3NeT has reached the effective area of ANTARES. Right: Assuming flux parameters from IceCube, KM3NeT/ARCA will observe same flux in half a year with 5σ significance, using both track and shower events [PoS(ICRC2023)1018]

Measurement of diffuse ν flux

Upper limits to diffuse flux of astrophysical neutrinos assuming IceCube best fit $\gamma=2.37$ $\Phi_{90}=3.06\times10^{-18}~\text{GeV}^{-1}\text{cm}^{-2}~\text{s}^{-1}~\text{sr}^{-1}~[\text{PoS(ICRC2023)}1195]}.$

Search for single sources

Different search modes

- point-like sources (extra-Galactic)
 - auto-correlation: search for clusters of events: space or space-time coincidences
 - correlation with underlying catalogue of preselected sources upon astrophysical motivation

AGNs catalogued by Fermi, star-forming Galaxies, IceCube HE sample

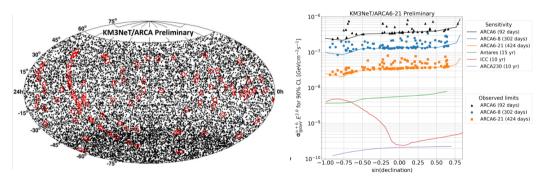
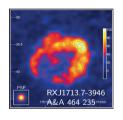
- extended sources (Galactic)
 - \bullet disk-shaped, fitted or based on extension seen in $\gamma\text{-ray}$ emission
 - \bullet assuming shape of $\gamma\text{-ray emission},$ when morphology is resolved

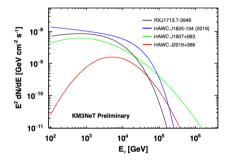
Neutrinos and γ rays are strictly connected as they are daughters of π^{\pm} , π^{0} .

follow-up of prompt multi-messenger alert

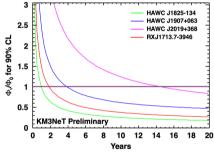
Search for point sources (all-sky)

Assuming ν flux $\propto E^{-2}$, KM3NeT/ARCA will reach comparable level to IceCube for the Northern Hemisphere, and improve by almost a factor 2 for the Southern Hemisphere


Figure: Upper limits at 90% C.L. reached with KM3NeT/ARCA [PoS(ICRC2023)1018]. Red circles are 2.5° around the candidate source positions.

Sensitivity to strongest Galactic sources


In hypothesis of hadronic emission, computing ν flux from γ -ray flux, several **extended** Galactic sources will be observable in a few years of operation.

Example of γ -ray emission as seen by H.E.S.S.

Expected ν fluxes (assumed 100% hadronic scenario)

Sensitivity at 90% CL as a function of the observation time

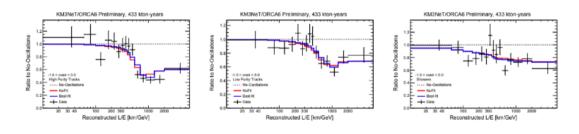
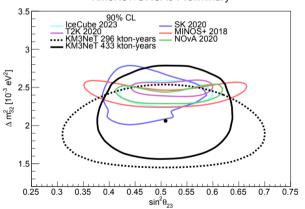
Physics case 2: fundamental neutrino properties

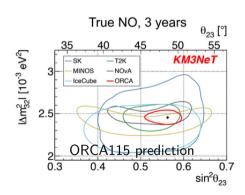
From analysis of atmospheric neutrinos at very high statistics.

- Neutrino oscillations
 - ullet Measurement of flavour oscillations through u rate count and best-fit Δm_{23}^2 and $\sin^2 heta_{23}$
 - Matter effects in propagation through the Earth and different interaction cross section $\sigma_{\nu}/\sigma_{\bar{\nu}}$ \rightarrow differences in neutrino rates for normal and inverted ordering
 - ullet $u_{ au}$ appearance ightarrow see talk by C. Lastoria
- Physics beyond the Standard Model
 - Non-standard oscillations (NSI) \rightarrow see talk by A. Lazo
 - Neutrino quantum decoherence
 - Neutrino decay
 - Sterile neutrinos
 - Violation of Lorentz Invariance
 - Heavy Neutral Leptons

Neutrino oscillations with ORCA-6 lines

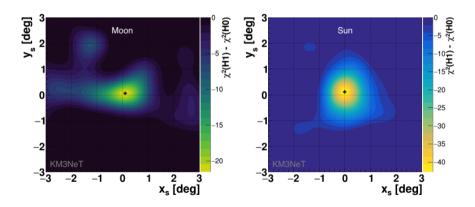
Oscillations are seen with significance $> 6\sigma$ in L/E distributions [PoS(ICRC2023)996] with ORCA-6 data set 433 kton-years (540 days)


Figure: L/E distributions. Left: high-purity tracks; middle: low purity tracks; right: showers.

Atmospheric oscillation parameters

Best fit: $\sin^2 \theta_{23} = 0.51^{+0.06}_{-0.07} \Delta m_{31}^2 = 2.14^{+0.36}_{-0.25} \cdot 10^{-3} \text{eV}^2$. Normal ordering is preferred.


KM3NeT/ORCA6 Preliminary

Measurements with atmpspheric muons

Sun shadow seen with 6.2 σ significance (extension 0.65°), moon shadow seen with 4.2 σ significance (extension 0.49°) [Eur. Phys. J. C 83, 344 (2023)].

Core-collapse supernova u

Produced in stellar core collapse at the end of stellar evolution like SN1987A. Real-time search for simoultaneous rate raise in DOMs [PoS(ICRC2021)941]

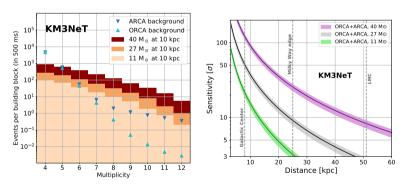
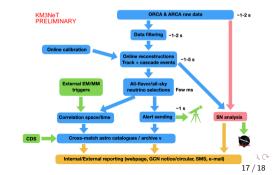


Figure: Left: SN events expected from 3 simulated progenitors at ORCA and ARCA as a function of different multiplicity values compared with BG rates. Right: Sensitivity as a function of distance.

Multi-messenger networking


Flares, transients and other sources with time variability (GRBs, gravitational waves, SN)

Including the case of mixed hadronic/leptonic emission, where flares are caused by hadronic emission on top of quiescent state \rightarrow Prompt alerting system between experiments, associated with rapid online analysis (and pointing directions for telescopes)

KM3NeT is getting ready to send and receive alerts in multi-messenger network

- SN pipeline already active for real-time analysis
- KM3NeT will replace ANTARES in follow up of alerts (ATel, GCN via AMON)

Summary

KM3NeT/ARCA - current status: 21 lines, topping up ANTARES effective area

- lacktriangle able to detect the diffuse flux observed by IceCube with $lacktriangle\sigma$ significance in half a year
- Sensitivity to astrophysical sources in the Southern Hemisphere improves by almost 2 orders of magnitude with respect to IceCube
- participation in multi-messenger prompt alert network

KM3NeT/ORCA - current status: 19 detection line, recording data at \sim 400 kton year

- Measurement of neutrino oscillations and best fit of oscillation parameters
- 2 Seach for new physics: ν_{τ} normalization factor, NSI, quantum decoherence, violation of Lorentz invariance, neutrino decay, dark matter through indirect detection