

NEXT

First searches of the ββ0ν decay in gaseous Xe And roadmap towards a ton-scale detector

XVIII International Conference on Topics in Astroparticle and Underground Physics University of Vienna, August 2023

Pau Novella (IFIC, CSIC & U. Valencia)
On behalf of the NEXT collaboration

Searching for the ββ0ν decay

Searching for the ββ0ν decay

NEXT: High-Pressure Gas-Xe TPC

• Sensitivity to the ββ0ν decay:

The NEXT Project

• Search for the $\beta\beta0v$ decay with a HPXe-TPC

The NEXT TPC Concept

Gas TPC with 2 dedicated readout planes

EL: linear gain, no avalanche fluctuations: optimize $\Delta \mathbf{E}$

NEXT-White: Physics @ LSC

TPC:

~5 kg active region 50 cm drift length

Tracking plane: 1792 SiPM 1 cm pitch

Physics program:

- ΔE<1% FWHM @ Q_{ββ}
- Event Topology
- Certify technology
- BG Measurement (2019)

2015-2021 136**X**e Inner shield: 6 cm of copper

Pressure Vessel: Stainless steel

> Energy Plane: 12 PMTs 30% coverage

Ultimate goal:

• $\beta\beta2\nu$ Measurement (2021)

First phase of the NEXT-100 experiment

The NEXT-White Detector @ LSC

First large-scale EL-based HPXe-TPC!

- Infrastructures @ LSC:
 - Gas system, seismic platform, lead castle, Rn abatement system

Drift: 0.4 kV/cm EL: 1.3 kV/(cm·bar)

NEXT-White Operation

- Stable operation from 2016 to 2021
- 83mKr → continuous calibration and monitoring
- $\beta\beta \rightarrow {}^{136}$ Xe-enriched and 136 Xe-depleted data:

Total run-times: 271.6 day (Run-V) and 208.9 day (Run-VI) DAQ dead time: ~3% @ Run-V and ~2% @ Run-VI

(2018)

no.10, P10014

NEXT-White Calibration: 208T1/137Cs

- ²³²Th/¹³⁷Cs gamma-ray interactions from external sources
 - Energy scale
 - Energy resolution vs E
 - Energy resolution @ Q

NEXT-White Calibration: ²⁰⁸Tl/¹³⁷Cs

- ²³²Th/¹³⁷Cs gamma-ray interactions from external sources
 - Energy scale
 - Energy resolution vs E
 - Energy resolution @ Q_B

²⁰⁸Tl double-escape

- JHEP 10 (2019) 230
- JINST 13 (2018) no.10, P10020

NEXT-White Calibration: 208Tl/137Cs

- ²³²Th/¹³⁷Cs gamma-ray interactions from external sources
 - Energy scale
 - Energy resolution vs E
 - Energy resolution @ Q_B

²⁰⁸Tl double-escape

- JHEP 10 (2019) 230
- JINST 13 (2018) no.10, P10020

Best energy resolution in Xe! 21

NEXT-White: Topological reconstruction

- Track reconstruction based on SiPM signals + RL deconvolution
- Double-e (sig) vs Single-e (bg) discrimination based on "blob" energy

NEXT-White: Topological reconstruction

- Track reconstruction based on SiPM signals + RL deconvolution
- Double-e (sig) vs Single-e (bg) discrimination based on "blob" energy
- Sig. efficiency ~ 60% for BG acceptance of ~4% @ 1.6 MeV

JHEP 10 (2019) 052 JHEP 21 (2020) 146

Results to be improved with ML:

DNNs: JINST 12 (2017) no.01, T01004 CNNs: JHEP 01 (2021) 189

P. Novella, NEXT @ TAUP2023

NEXT-White: Background Stability

Fiducial Background rates per day:

NEXT-White: Background Stability

- Fiducial Background rates per day:
- Run-V/Run-VI Background (E,Z) fit:

NEXT-White: Background Stability

• Fiducial Background rates per day:

Run-V/Run-VI Background (E,Z) fit:

Phys.Rev.C 105 (2022) 5, 055501 arXiv:2305.09435

Specific radiogenic and cosmogenic background contributions consistent in Run-V and Run-VI

NEXT-White: $\beta\beta2\nu$ Measurement

Background-model-dependent method:

NEXT-White: ββ2ν Measurement

Background-model-dependent method:

Background-subtraction method, with little dependence on background model:

Novel (so far unique in the field) technique possible due to the Xenon-based NEXT technology

Precision limited by exposure (3.5 kg of Xe)!

NEXT-White: Demonstration of $\beta\beta0\nu$ searches

• Background-model-dependent:

NEXT-White: Demonstration of $\beta\beta0\nu$ searches

• Background-model-dependent:

NEXT-White: Demonstration of $\beta\beta0\nu$ searches

Background-model-dependent:

Background-subtraction (novel in the field):

 $\beta\beta$ analyses demonstrate the capabilities of the NEXT technology with only 3.5 kg of Xe!

The NEXT-100 Detector

• Scales up the NEXT-White technology (~ 100 kg) to perform competitive $\beta\beta0\nu$ searches

Muon veto covering the lead castle:

Goals of NEXT-100:

- Energy resolution <1% FWHM
- Improve radioactive budget
- Competitive Search of ββ0ν
- Prepare the ton-scale...
- LSC infrastructures in place, detector being installed (2022-2023)

NEXT-100 @ LSC

P. Novella, NEXT @ TAUP2023

PMT Window

15 / 21

NEXT-100 @ LSC

NEXT-100 Physics Case

• Sensitivity study @ 2016:

159

1605 (2016)

JHIEP

 New BG budget estimation: radiopurity screening campaign + MC

Sensitivity: $4.1 \times 10^{25} \text{ yr at } 90\% \text{ CL}$ (3 years)

NEXT at the Ton-scale: NEXT-HD

- Next generation of $\beta\beta$ experiments: exposures >10³ kg and BG index < 1 count/ton/yr
- Conceptual design of a NEXT ton-scale detector: symmetric TPC, dense SiPM array, Barrel fiber detector (S1+S2)

Energy resolution < 0.7% FWHM due to improvement in light collection

- Gas mixtures: low diffusion (Xe+He4) to improve resolution and H3 (if possible) to mitigate cosmogenic BGs
- First module to be installed at LSC, but collaboration open to a multi-modular approach

NEXT at the Ton-scale: NEXT-HD

- Next generation of $\beta\beta$ experiments: exposures >10³ kg and BG index < 1 count/ton/yr
- Conceptual design of a NEXT ton-scale detector: symmetric TPC, dense SiPM array, Barrel fiber detector (S1+S2)

- Gas mixtures: low diffusion (Xe+He4) to improve resolution and H3 (if possible) to mitigate cosmogenic BGs
- First module to be installed at LSC, but collaboration open to a multi-modular approach

NEXT with Ba-tagging: BOLD

136
Xe $\rightarrow ^{136}$ Ba⁺⁺ + $2e^{-}(+2\bar{\nu}_{e})$

- Efficient ID of Ba²⁺ \rightarrow BG-free experiment
- R&D on Single Molecule Fluorescent Imaging:

PRL 120 (2018) 132504

Nature 583 (2020) 7814 Nature Commun. 13 (2022) 1, 7741

P. Novella, NEXT @ TAUP2023

Summary

The NEXT Collaboration

