

First Neutrino Mass Limit from the Project 8 Experiment

August 30, 2023 XVIII TAUP Vienna, Austria

Noah S. Oblath

For the Project 8 Collaboration

PNNL is operated by Battelle for the U.S. Department of Energy

Measuring Neutrino Mass with Tritium Beta Decay

- We care about neutrino mass because we do not yet know the absolute neutrino mass scale
- Neutrino mass can be probed in a straightforward way with tritium beta decay
- We measure the kinetic energy of the beta decay electrons and extract m_{β}
- m_{β} is the electron-weighted incoherent sum of the neutrino mass states
- We measure the endpoint and the shape of the spectrum at the endpoint

Measuring Neutrino Mass with Tritium Beta Decay

- We care about neutrino mass because we do not yet know the absolute neutrino mass scale
- Neutrino mass can be probed in a straightforward way with tritium beta decay
- We measure the kinetic energy of the beta decay electrons and extract m_{β}
- m_{β} is the electron-weighted incoherent sum of the neutrino mass states
- We measure the endpoint and the shape of the spectrum at the endpoint

10

kinetic energy (keV)

Measuring Neutrino Mass with Tritium Beta Decay

- We care about neutrino mass because we do not yet know the absolute neutrino mass scale
- Neutrino mass can be probed in a straightforward way with tritium beta decay
- We measure the kinetic energy of the beta decay electrons and extract m_{β}
- m_{β} is the electron-weighted incoherent sum of the neutrino mass states
- We measure the endpoint and the shape of the spectrum at the endpoint

Challenges for Future Experiments

- The KATRIN experiment has the leading tritium beta decay measurement
 - Current limit is $m_{\beta} < 0.8 \text{ eV}$
 - Projected sensitivity is $m_{\beta} < 0.2 \text{ eV}$
- We can definitively rule out the inverted hierarchy with a sensitivity of 0.04 eV
 - Practical challenges make the needed scaling of the MAC-E filter technique impractical
- We need a new technique that:
 - Scales with volume
 - Has high precision
 - Is compatible with atomic tritium

KATRIN Main Spectrometer

Atomic T vs T₂ Energy Spread

A New Technique: Cyclotron Radiation Emission Spectroscopy

How to make a CRES measurement:

- 1. Place tritium in a magnetic field
- 2. Decay electrons emit cyclotron radiation
- 3. Precisely measure the frequency of the radiation to determine kinetic energy for each electron

$$\omega_{\gamma} = \frac{\omega_0}{\gamma} = \frac{eB}{K + m_e}$$

Concept: B. Monreal and J. Formaggio, Phys. Rev. D80 051301 (2009)

A New Technique: Cyclotron Radiation Emission Spectroscopy

CRES has several advantages:

- Scales with volume
- High precision from frequency measurement
- Works with a gaseous atomic tritium source
- Differential measurement for better statistics
- Potential for very low background

$$\omega_{\gamma} = \frac{\omega_0}{\gamma} = \frac{eB}{K + m_e}$$

Concept: B. Monreal and J. Formaggio, Phys. Rev. D80 051301 (2009)

Demonstrating a New Spectroscopic Technique

Phase I: First use of CRES for electron spectroscopy

Phase II: First use of CRES for tritium spectroscopy and a neutrino-mass limit

A. Ashtari Esfahani, et al., Phys. Rev. Lett. (to be published) arXiv 2212.05048

Electron Detection with CRES

- First electrons were detected in June 2014
- Energy lost to cyclotron radiation increases the frequency
- Jumps between "tracks" are consistent with electron scattering on residual gas molecules
- Initial frequency determines the energy of the electron at the decay

Electron Detection with CRES

- First electrons were detected in June 2014
- Energy lost to cyclotron radiation increases the frequency
- Jumps between "tracks" are consistent with electron scattering on residual gas molecules
- Initial frequency determines the energy of the electron at the decay

eV-Resolution Spectroscopy

- Demonstrated with 83mKr conversionelectrons
- 18-, 30-, and 32-keV electrons
- Narrow natural line widths highlight CRES resolution
- Remarkable linearity over the energy range of interest

The Phase II Apparatus

Pacific Northwest

Trap Depth: Resolution vs Statistics

 In Phase II statistics and resolution are controlled by trap depth

- Tritium measurement: prioritize statistics
- 83mKr line measurements: prioritize resolution

Determining Detection Efficiency

- Spectral shape depends on variation in detection efficiency with energy
- Mode structures in the cavity caused strong variations in the efficiency
- Variation with frequency was measured by detecting 83mKr K-line electrons while shifting the magnetic field
- Efficiency vs frequency must be corrected for SNR variations with energy
- SNR vs energy is determined with simulations and matching to calibration data

Measuring Detector Response

- Start with model for the underlying ^{83m}Kr lineshape
- Add instrumental resolution
 - Magnetic field inhomogeneity
- Add 1st-order scattering
 - Scattering + missed tracks
- Compare with calibration data
- Detector response is well understood

Final Phase II Tritium Spectrum Results

- First tritium spectrum measurement with CRES
- Endpoint agrees with literature
- No background events above the endpoint

T₂ Endpoint

Bayesian: $E_0 = (18553^{+18}_{-19}) \text{ eV}$ Frequentist: $E_0 = (18548^{+19}_{-19}) \text{ eV}$

Neutrino Mass

Bayesian: $m_{\beta} < 155 \text{ eV}$ Frequentist: $m_{\beta} < 152 \text{ eV}$

Background rate $< 3 \times 10^{-10} \text{ eV}^{-1} \text{s}^{-1}$

A. Ashtari Esfahani, et al., Phys. Rev. Lett. (to be published) arXiv 2212.05048

Evaluation of Uncertainties

- We determined the effects of all uncertainties on the measurement of the tritium endpoint
- Systematics includes correlations
- Phase II was statistics limited

Source of Uncertainty	Contribution to Endpoint Uncertainty (eV)
Statistics	±17
Systematics	±9
Scattering	±6
Magnetic field broadening	±4
Instrumental resolution	±4
Frequency-dependence of the detector response	±6
Bin signal efficiencies	±4

Phase II References A. Ashtari Esfahani, *et al.*, Phys. Rev. Lett. (to be published) arXiv 2212.05048 A. Ashtari Esfahani, *et al.*, Phys. Rev. C (submitted) arXiv 2303.12055

Other Phase II Accomplishments

Interval coverage: 91%

Source density: 3.7×10¹⁸ atoms/m³

Inputted m_{β} : 0.008 eV

Classification of CRES signals with machine learning for improved event reconstruction New J. of Phys., 22, 033004 (2020)

Main Peak LMC Generator 1 First Sideband Second Sideband LMCFieldCalculator

Using Bayesian inference to study the potential sensitivity of future CRES experiments to the neutrino mass Phys. Rev. C 103, 065501 (2021)

O 0.10 0.09 0.08 0.07

0.06 ج 0.05

0.04

10-2

 10^{-1}

Effective Volume × Time (m³·yrs)

 10^{0}

Use of information theory and the Viterbi algorithm to study the optimal detection of CRES signals New J. Phys. 24, 053013 (2022)

phenomenology of CRES events Phys. Rev. C 99, 055501 (2019)

Kassiopeia

KSStepModifier

Custom software to accurately simulate CRES data New J. Phys. 21, 113051 (2019)

Successful Demonstration of Tritium Spectroscopy with CRES

PROJECT 8

- Project 8 has demonstrated the use of CRES to place a limit on the neutrino mass
- Phase II showed the ability to control backgrounds, and quantitatively evaluate systematic uncertainties
- Project 8 is using the Phase II success to motivate and plan the path to the 40 meV experiment

Juliana Stachurska, CRES with Cavities in Phase III, August 29 at 5:30 pm Larisa Thorne, Atomic Tritium for Phase III, August 30 at 3:15 pm

Project 8 Collaboration

Case Western Reserve University

• Razu Mohiuddin, Benjamin Monreal, Yu-Hao Sun Ruprecht Karls-Universität Heidelberg

Felix Spanier

University of Illinois Urbana-Champaign

Chen-Yu Liu

Indiana University

 Robert Cabral, Manjinder Oueslati, Walter Pettus, Anna Reine

Johannes Gutenberg-Universität Mainz

• Sebastian Böser, Martin Fertl, Alec Lindman, Christian Matthé, Brunilda Mucogllava, René Reimann, Florian Thomas, Larisa Thorne

Karlsruher Institut für Technologie

Thomas Thümmler

Lawrence Berkeley National Laboratory

Alan Poon

Lawrence Livermore National Laboratory

Kareem Kazkaz

Massachusetts Institute of Technology

• Joseph Formaggio, Mingyu Li, Junior Peña, Juliana Stachurska, Wouter Van De Pontseele

Pacific Northwest National Laboratory

• Benjamin Foust, Jeremy Gaison, Noah Oblath, Jonathan Tedeschi, Brent VanDevender

Pennsylvania State University

• Srinikitha Bhagvati, Matthew Brandsema, Carmen Carmona-Benitez, Richard Mueller, Luiz de Viveiros, **Andrew Ziegler**

University of Texas at Arlington

Benjamin Jones

University of Washington

• Ali Ashtari Esfahani, Christine Claessens, Peter Doe, Sanshiro Enomoto, Alexander Marsteller, Elise Novitski, Hamish Robertson, Gray Rybka

Yale University

• Karsten Heeger, James Nikkel, Penny Slocum, Pranava Teja Surukuchi, Arina Telles, Talia Weiss

www.project8.org

This work was supported by the US DOE Office of Nuclear Physics, the US NSF, the PRISMA+ Cluster of Excellence at the University of Mainz, and internal investments at all collaborating institutions.

