Towards the Solutions of Reactor and Gallium Anomalies

Yu-Feng Li

Institute of High Energy Physics & University of Chinese Academy of Sciences, Beijing

The XVIII International Conference on Topics in Astoparticle and Underground Physics (TAUP2023)

28 August – 01 September, 2023

Historical Short-Baseline Anomalies

2011 Reactor Anomaly: $\bar{\nu}_e \rightarrow \bar{\nu}_{\times}$ (2.5 σ)

2005 Gallium Anomaly: $\nu_e
ightarrow
u_ imes (2.9\sigma)$

1995 LSND Anomaly: $\bar{
u}_{\mu}
ightarrow \bar{
u}_{e} \ (\sim 4\sigma)$

2008 MiniBooNE Anomaly: $\stackrel{(-)}{
u_{\mu}} \rightarrow \stackrel{(-)}{
u_{e}}$ (4.8 σ)

Beyond 3-v oscillation: Sterile neutrinos

Explanation of short baseline oscillations:

eV-scale sterile neutrinos (which have mixing with active mass eigenstates)

Reactor Antineutrino Anomaly

HM fluxes (conversion method) v.s. data

[Mueller et al, arXiv:1101.2663], Huber, arXiv:1106.0687]

 $2.5 \sigma \text{ deficit} \Longrightarrow \text{Anomaly!}$

Giunti, YFL, Ternes, Xin, arXiv: 2110.06820

ightharpoonup Original 2011 Reactor Antineutrino Anomaly: 2.5 σ [Mention et al, arXiv:1101.2755]

Recent developments

- (1) "5 MeV bump" (cannot be explained by oscillation) questioned the theoretical reactor model (HM model).
- (2) New development in theoretical models
 - New summation model
 - KI (Kurchatov Institute) correction to the conversion model
- (3) New development in experimental measurements
 - > Fission evolution data from Daya Bay & RENO

New reactor flux models

Phys. Rev. C 83, 054615 (2011)

Diagram Courtesy: XIN Zhao

2019: EF fluxes (summation method)

[Estienne, Fallot, et al, arXiv:1904.09358]

Giunti, YFL, Ternes, Xin, arXiv: 2110.06820

1.2σ deficit \Longrightarrow No Anomaly!

[See also: Berryman, Huber, arXiv:1909.09267, arXiv:2005.01756]

- UNKNOWN UNCERTAINTIES!
- ► Rough estimation used in our calculations: 5% for ²³⁵U, ²³⁹Pu, ²⁴¹Pu and 10% for ²³⁸U. [Hayes, Jungman, McCutchan, Sonzogni, Garvey, Wang, arXiv:1707.07728]

2021: KI fluxes (conversion method)

[Kurchatov Institute: Kopeikin, Skorokhvatov, Titov, arXiv:2103.01684]

Giunti, YFL, Ternes, Xin, arXiv: 2110.06820

 1.1σ deficit \Longrightarrow No Anomaly!

Approximate agreement with ab initio EF fluxes!

HM + KI uncertainties.

2019: HKSS fluxes (conversion method)

[Hayen, Kostensalo, Severijns, Suhonen, arXiv:1908.08302]

Rovno91

STEREO

 10^{3}

SRP

 2.9σ deficit \Longrightarrow Anomaly larger than the 2.5σ HM anomaly!

[See also: Berryman, Huber, arXiv:1909.09267, arXiv:2005.01756]

HM + HKSS uncertainties.

Reactor fuel evolution data

- Reactor $\bar{\nu}_e$ flux produced by the β decays of the fission products of 235 U 238 U 239 Pu 241 Pu
- Effective fission fractions:

$$F_{235}$$
 F_{238} F_{239} F_{241}

Cross section per fission (IBD yield):

$$\sigma_f = \sum_k F_k \, \sigma_{f,k}$$

for k = 235, 238, 239, 241

Model v.s. Data Comparison

Giunti, YFL, Ternes, Xin, arXiv: 2110.06820

A global fit of all reactor rates + evolution data shows

- ▶ Tension with HM (2.6 σ), HKSS (2.8 σ), and HKSS-KI (1.9 σ).
- Agreement with EF (0.8σ) and KI (1.2σ) .

The EF (summation model) and KI (conversion) models are the best ones!

Limits on the SBL mixing

- The favored KI and EF models are compatible with the absence of SBL oscillations and give only 2σ upper bounds on the effective mixing parameter $\sin^2 2\vartheta_{ee} = \sin^2 2\vartheta_{14}$.
- Independently from the reactor neutrino flux model, we have

$$\sin^2 2\vartheta_{ee} \lesssim 0.25$$
 at 2σ .

Gallium Anomaly

Gallium Anomaly

 $\Delta m_{
m SBL}^2 \gtrsim 1\,{
m eV}^2 \gg \Delta m_{
m ATM}^2$

Gallium Radioactive Source Experiments: GALLEX, SAGE, BEST (2021)

Berryman et al, arXiv:2111.12530]

15

Gallium Anomaly

- No clear model-independent anomaly from different path lengths.
- Puzzling quasi-equality of the two BEST measurements at different distances.
- ► After the BEST measurements, the Gallium Anomaly is still an anomaly based on the absolute comparison of observed and predicted rates.

Cross section

► A deficit could be due to an overestimate of

$$\sigma(
u_e + {}^{71}{
m Ga}
ightarrow {}^{71}{
m Ge} + e^-)$$

First calculation: Bahcall, PRC 56 (1997) 3391, hep-ph/9710491

 $\sigma_{G.S.}$ from $T_{1/2}(^{71}\text{Ge}) = 11.43 \pm 0.03 \,\text{days}$

[Hampel, Remsberg, PRC 31 (1985) 666]

$$\sigma_{\rm G.S.}(^{51}{\rm Cr}) = (5.54 \pm 0.02) \times 10^{-45} \, {\rm cm}^2$$

$$\sigma(^{51}\text{Cr}) = \sigma_{G.S.}(^{51}\text{Cr}) \left(1 + 0.669 \frac{\text{BGT}_{175}}{\text{BGT}_{G.S.}} + 0.220 \frac{\text{BGT}_{500}}{\text{BGT}_{G.S.}} \right)$$

▶ The contribution of excited states is only $\sim 5\%!$

[Bahcall, hep-ph/9710491]

Cross section: contribution of excited states?

 $\nu_e + {}^{71}{\rm Ga} \rightarrow {}^{71}{\rm Ge} + e^-$ cross sections in units of $10^{-45}\,{\rm cm}^2$:

		⁵¹ Cr		³⁷ Ar			
		$\sigma_{\sf tot}$	$\delta_{\sf exc}$	$\sigma_{\sf tot}$	$\delta_{\sf exc}$	\overline{R}	GA
Ground State [Phys.Atom.Nucl. 83 (2020) 1549]	$T_{1/2}(^{71}{ m Ge})$	5.539 ± 0.019	_	6.625 ± 0.023	_	0.844 ± 0.031	5.0σ
Bahcall [hep-ph/9710491]	71 Ga $(p, n)^{71}$ Ge	5.81 ± 0.16	4.7%	$\textbf{7.00} \pm \textbf{0.21}$	5.4%	0.802 ± 0.037	5.4σ
Kostensalo et al. [arXiv:1906.10980]	Shell Model	5.67 ± 0.06	2.3%	6.80 ± 0.08	2.6%	0.824 ± 0.031	5.6σ
Semenov [Phys.Atom.Nucl. 83 (2020) 1549]	⁷¹ Ga(³ He, ³ H) ⁷¹ Ge	5.938 ± 0.116	6.7%	7.169 ± 0.147	7.6%	0.786 ± 0.033	6.6σ

Cross section: ⁷¹**Ge decays**

```
T_{1/2}^{\rm BGZZ}(^{71}{\rm Ge}) = 12.5 \pm 0.1\,{\rm d} \quad \text{(Bisi, Germagnoli, Zappa, and Zimmer, 1955) [39]}, T_{1/2}^{\rm R}(^{71}{\rm Ge}) = 10.5 \pm 0.4\,{\rm d} \quad \text{(Rudstam, 1956) [40]}, \quad \textbf{Giunti, YFL,Ternes, Xin, arXiv: 2212.09722} T_{1/2}^{\rm GRPF}(^{71}{\rm Ge}) = 11.15 \pm 0.15\,{\rm d} \quad \text{(Genz, Renier, Pengra, and Fink, 1971) [41]}, T_{1/2}^{\rm HR}(^{71}{\rm Ge}) = 11.43 \pm 0.03\,{\rm d} \quad \text{(Hampel and Remsberg, 1985) [42]}.
```


See a similar study in

Brdar, Gehrlein, Kopp, 2303.05528

- New measurement of 71 Ge life time: *Collar, Yoon, 2307.05353* 11.46 ± 0.04 days
- New decay branch to unknown ⁷¹Ga states:
 - < 0.4% BR (v.s. 10% BR for GA)
- Relative EC rates from different atomic shells:

 $PL/PK = 0.125 \pm 0.008$ (v.s. 0.117)

All nuclear aspects of Ge are NOT viable!

Gallium – Solar neutrino tension

	Solar neutrinos +		
	ϑ_{13} [T2K&NOvA]		
	$\Delta\chi^2_{\sf PG}$	GoF_PG	
Ground State	10.65	0.49%	
Bahcall	14.14	0.085%	
Kostensalo	12.79	0.17%	
Semenov	17.24	0.018%	

Giunti, YFL, Ternes, Tyagi, Xin, arXiv: 2209.00916

- Both Gallium and solar experiments detect neutrinos.
- No CPT-violating solution of the tension!

[see also: Goldhagen, Maltoni, Reichard, Schwetz, arXiv:2109.14898; Berryman, Coloma, Huber, Schwetz, Zhou, arXiv:2111.12530]

Gallium – Reactor rates tension

	EF		KI		
	$\Delta\chi^2_{\sf PG}$	GoF_{PG}	$\Delta\chi^2_{\sf PG}$	GoF_{PG}	
Ground State	9.1	1.1%	11.9	0.26%	
Bahcall	12.9	0.16%	16.3	0.029%	
Kostensalo	11.5	0.31%	15.3	0.049%	
Semenov	17.0	0.02%	22.5	0.0013%	

Giunti, YFL, Ternes, Tyagi, Xin, arXiv: 2209.00916

Gallium – Reactor spectral-ratio tension

NEOS+PROSPECT+DANSS +STEREO+Bugey-3

- The Reactor Spectral Ratio Fits (RSRF) prefer SBL oscillations with small mixing $(\sin^2 2\vartheta_{ee} \approx 0.02)$.
- Tension with the Gallium Anomaly!

RSRF(N/DB) RSRF(N/R) $\Delta\chi^2_{\mathsf{PG}}$ $\Delta \chi^2_{PG}$ GoF_{PG} GoFPG 12.95 0.15% 1.2% 8.91 Bahcall 12.86 0.16% 8.74 1.3% 1.2% 0.16% Kostensalo 12.91 8.89 Semenov 12.88 0.16% 8.70 1.3%

Giunti, YFL, Ternes, Tyagi, Xin, arXiv: 2209.00916

Beyond Simple 3+1 mixing scheme

Explanations beyond the Standard Model

several exotic ingredients; somewhat tuned MSW resonance; $\star\star\star\star$ ν_s coupled to ultralight DM (MSW resonance, Sec. 5.1.1) new ν_4 decay channel required for cosmology. ν_s coupled to dark energy several exotic ingredients; somewhat tuned MSW resonance; ★★★☆☆ (MSW resonance, Sec. 5.1.2) cosmology similar to the previous scenario. ν_s coupled to ultralight DM several exotic ingredients; somewhat tuned parametric res- $\star\star\star\star$ (param. resonance, Sec. 5.1.3) onance; cosmology requires post-BBN DM production via misalignment. decaying ν_s difficult to reconcile with reactor and solar data; regeneration ★★☆☆ (Section 5.2) of active neutrinos in ν_s decays alleviates tension, but does not resolve it. vanilla eV-scale ν_s preferred parameter space is strongly disfavored by solar and ★☆☆☆ (Refs. [17, 18]) reactor data. ν_s with CPT violation avoids constraints from reactor experiments, but those from (Refs. [130]) solar neutrinos cannot be alleviated. extra dimensions neutrinos oscillate into sterile Kaluza–Klein modes that prop-(Refs. [131-133])stochastic neutrino mixing (Ref. [134]) non-standard source of decoherence needed; known experimendecoherence (Refs. [137, 138]) tal energy resolutions constrain wave packet letch, making an explanation by wave packet separation alogh challenging. ν_s coupled to ultralight scalar ultralight scalar coupling to ν_s and to ordinary matter affects sterile neutrino parameters; can provoid reactor constraints (Ref. [139])

Conclusion

The Reactor Antineutrino Anomaly, discovered in 2011, is practically resolved with a reduction of the ²³⁵U flux.

- This consensus is supported by new summation model, by the KI correction to conversion model, and by global fit of reactor data (including evolution data).
- > Solution (not yet) to the spectral anomaly may change the game.
- The Gallium Neutrino Anomaly, discovered in 2007, has been revived by the BEST result.
- No viable solution from nuclear physics yet
- Strong tension between Gallium and reactor (solar) data
- The global fit of light sterile neutrinos (see backups)
- > strong disappearance and appearance tension

Thank you for your attention!

Extras

Reactor Flux Calculations

- Summation method (ab initio)
- Conversion method

Reactor $\bar{\nu}_e$ flux produced by the β decays of the fission products of

²³⁵U ²³⁸U ²³⁹Pu ²⁴¹Pu

[Dayman, Biegalski, Haas, Rad. Nucl. Chem. 305 (2015) 213]

Summation (ab initio) Method

Aggregate reactor spectrum (electron or neutrino):

$$S_{\text{tot}}(E, t) = \sum_{k} F_k(t) S_k(E) \qquad (k = 235, 238, 239, 241)$$
fission fractions

$$S_k(E) = \sum_n Y_n^k \sum_b \mathsf{BR}_n^b S_n^b(E) \leftarrow \begin{cases} \mathsf{forbidden} \\ \mathsf{decay} \end{cases}$$
 spectrum cumulative branching fission ratio yield

- ▶ The calculation of each $S_k(E)$ requires knowledge of about 1000 spectra and branching ratios.
- Large uncertainties, because nuclear databases are incomplete and sometimes inexact.

Conversion Method

- In the 80's Schreckenbach et al. measured the aggregate β spectra of 235 U, 239 Pu, and 241 Pu exposing thin foils to the thermal neutron flux of the ILL reactor in Grenoble.
- Semi-empirical method: conversion $S_k^e(E_e) \rightarrow S_k^{\nu}(E_{\nu})$ considering ~ 30 virtual allowed β decay spectra. (k = 235, 239, 241)

Model Indep. Measurements at Reactors

Ratios of spectra at different distances

NEOS

PROSPECT [Roca Catala @ NOW 2022]

DANSS [Alekseev @ NOW 2022]

DANSS on a lifting platform

STEREO [del Amo Sanchez @ NOW 2022]

Model Indep. Measurements at Reactors

Giunti, YFL, Ternes, Tyagi, Xin, arXiv: 2209.00916

- ► Fit with NEOS/Daya Bay: $\Delta \chi^2_{3\nu-4\nu} = 12.6 \Longrightarrow 3.1 \ \sigma$
- ► Fit with NEOS/RENO: $\Delta \chi^2_{3\nu-4\nu} = 9.1 \Longrightarrow 2.6 \ \sigma$

3+1 Appearance vs Disappearance

- ► SBL Oscillation parameters: $\Delta m_{41}^2 |U_{e4}|^2 |U_{\mu 4}|^2$ ($|U_{\tau 4}|^2$)
- \blacktriangleright Amplitude of ν_e disappearance:

$$\sin^2 2\theta_{ee} = 4|U_{e4}|^2 (1 - |U_{e4}|^2) \simeq 4|U_{e4}|^2$$

▶ Amplitude of ν_{μ} disappearance:

$$\sin^2 2\vartheta_{\mu\mu} = 4|U_{\mu 4}|^2 \left(1 - |U_{\mu 4}|^2\right) \simeq 4|U_{\mu 4}|^2$$

▶ Amplitude of $\nu_{\mu} \rightarrow \nu_{e}$ transitions:

$$\sin^2 2\vartheta_{e\mu} = 4|U_{e4}|^2|U_{\mu4}|^2 \simeq \frac{1}{4}\sin^2 2\vartheta_{ee}\sin^2 2\vartheta_{\mu\mu}$$
 quadratically suppressed for small $|U_{e4}|^2$ and $|U_{\mu4}|^2$

Appearance-Disappearance Tension

Appearance $(v_{\mu} \rightarrow v_{e})$ channel

Disappearance (v_{μ}) channel

Global Appearance-Disappearance Tension

- $ightharpoonup
 u_{\mu}
 ightarrow
 u_{e}$ is quadratically suppressed!
- ► 2019 Global Fit:

$$\chi^2/\text{NDF} = 843.6/794$$

GoF = 11%

$$\chi^2_{PG}/NDF_{PG} = 46.7/2$$
 $GoF_{PG} = 7 \times 10^{-11} \leftarrow \bigcirc$

Similar tension in

$$3+2$$
, $3+3$, ..., $3+N_s$

1508.03172

New Dedicated Experiments

- ► SBN: Stanco @ NOW 2022 and Karagiorgi @ NOW 2022.
- ▶ JSNS²: August 2022 Long-Baseline Neutrino News: They are working on the blind analysis of the 1.45×10^{22} POT data taken until June 2021.