For the IceCube Collaboration

New Measurement of Muon Neutrino Disappearance with IceCube-DeepCore

Shiqi Yu¹, Jessie Micallef²

Michigan State University¹

Al Institute for Artificial Intelligence and Fundamental Interactions²

TAUP 2023 @ Vienna

v_{μ} Disappearance

Each flavor (e, μ , τ) is a superposition of masses (1, 2, 3)

Oscillations are described by:

- Mixing angles (θ_{23} , θ_{13} , θ_{12}), δ_{CP}
- Squared mass differences: Δm²₃₂, Δm²₂₁

- 1 km³ deep under antarctic ice;
- 5160 digital optical modules (DOMs) detect Cherenkov photons;
- DOMs record pulse charges & times;
- Can see **up to PeV-scale** neutrinos.
- DeepCore: denser configured sub-detector, can observe GeV-scale neutrinos.

Typical Events in IceCube

time light

v, Disappearance with IceCube

- Atmospheric muon neutrinos from cosmic ray interactions:
 - Wide ranges of both energy (E) and baseline

v_{μ} Disappearance with IceCube

- Atmospheric muon neutrinos from cosmic ray interactions:
 - Wide ranges of both energy (E) and baseline
 (L).
 - Neutrino distance of travel (L) calculated using arrival direction (zenith).

v_{μ} Disappearance with IceCube

DOI: 10.1016/j.nima.2020.164332

- Atmospheric muon neutrinos from cosmic ray interactions:
 - Wide ranges of both energy (E) and baseline (L), and largest values.
- Neutrino distance of travel (L)
 calculated using arrival direction

(zenith).

v_u survival probability (two flavor approx.):

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^2(2\theta_{23})\sin^2(\frac{1.27\Delta m_{32}^2 L}{E})$$

v_u Disappearance with IceCube

• Atmospheric muon neutrinos from cosmic ray interactions:

- Wide ranges of both energy (E) and baseline (L), and largest values.
- Neutrino distance of travel (L) calculated using arrival direction

(zenith).

v_u survival probability (two flavor approx.):

DOI: 10.1016/j.nima.2020.164332

Low-energy (< 100 GeV) reconstruction is critical to oscillation analysis

Convolutional Neural Networks

- Only use DeepCore & nearby IceCube strings;
- Five CNNs trained: optimized for different variables;
- Comparable resolution to the current likelihood-based* method; *Eur. Phys. J. C 82 (2022) 9, 807
 - ~3,000 times faster in runtime: big advantage for full MC production of atmospheric neutrino datasets.

5 summarized variables per DOM:

- sum of charges
- time of first (last) pulse
- charge weighted mean (std.) of times of pulses

Reconstruct variables at final level

- Neutrino Energy
- Direction (L)
- PID: v_u CC vs. others
- Interaction vertex
- Atm. muon classifier

Analysis binning

Selections

9

Preliminary Analysis Sample

- Data taken over ~3,390 days between 2012-2021;
- Total of 150,257 candidates;
- High signal (ν_μ CC) and low background (noise and atm. muon) rates (~0.6%):
 - Several levels of selection are applied to eliminate the primary atm. muons and noise backgrounds.

3D Binned Analysis Sample

Measure 3D distortions in reconstructed [energy, cos(zenith), PID]:

• PID discriminates v_{μ} CC vs. neutrino backgrounds;

27,352 tracks; 22,963 cascades.

3D Binned Analysis Sample

Measure 3D distortions in reconstructed [energy, cos(zenith), PID]:

- PID discriminates v_{μ} CC vs. neutrino bkgs;
 - 27,352 tracks; 22,963 cascades.
- Help constraining systematic parameters

 θ_{22} : +5° vs. Nominal

Oscillation Result: L/E

- Good overall data/mc agreement;
- Most prominent oscillation signature in high-pid bin.

Oscillation Result: Contours

- Consistent with the previous IceCube results.
- Significant improvements to MC models and calibration since DeepCore 3-year results.
- Compared to DeepCore 8-year result:
 New reconstruction, including
 cascade-like bin into analysis, more
 statistics.

8-year result: Phys. Rev. D 108, 012014 (2023)

Oscillation Result: Contours

- The new result is compatible and complementary with the existing measurements:
 - Very high energy sample (5–100 GeV) and very different systematic uncertainties → strong validation of the standard 3-flavor oscillation

Oscillation Result: Contours

- The new result is compatible and complementary with the existing measurements.
 - \circ Competitive on Δm^2_{32} measurement.
- Room for future improvements!
 - Flux model; particle modeling; calibration, etc.

Future

Upcoming results of neutrino physics:

mass ordering, non-standard interaction, etc...

The Upgrade detector:

- More densely instrumented strings in the center
 - Better event resolution!
- DOM: multiple PMT designs to improve photon-collection efficiency and thereby reconstruction
- Will improve calibration!
- Target deploying 2025/26

Later talk in this session: "Atmospheric neutrino oscillation sensitivities with the IceCube Upgrade", Jan Weldert

Conclusions

- First-time using the highest-statistic (9.3yr) DeepCore atmospheric neutrino dataset for oscillation measurements:
 - Machine learning tools (including CNNs) are used for multi-purpose reconstruction.
- Compatible, complementary result with the existing measurements;
 - \circ Competitive constraint on Δm_{32}^2 .
- A lot of room for future improvements!
- More oscillation results using this new sample on the way!tuned!
 - Neutrino mass ordering, NSI analysis, etc...

Stay

Hey I'm a D-Egg

Training Samples

- Balanced MC samples;
- Energy, direction, interaction vertex are trained on v, CC events (signal).

Muon Classifier

PID: v_{μ} CC

Reconstruction Performance

- Nominal MC with analysis cuts and flux, xsec, and oscillation weights applied;
- Comparable resolution to current (likelihood-based) method;
- ~3,000 times faster in runtime: big advantage for full MC production of atmospheric neutrino datasets.

v_{μ} Disappearance Analysis

- Systematic uncertainty pulls within expectations;
- Same treatments with DeepCore 8-year results:
 - A publication with details coming soon.

Future improvements:

- Reduce correlations among flux uncertainties: PCA;
- Further MC improvements underway.

Convolutional Neural Networks (CNNs)

- Only use DeepCore & nearby IceCube strings;
- Five CNNs trained on balanced MC samples: optimized for different variables.

5 summarized variables per DOM:

- sum of charges
- time of first (last) pulse
- charge weighted mean (std.) of times of pulses

Training Samples

- Balanced MC samples;
- Energy, direction, interaction vertex are trained on v_{μ} CC

Training Samples

Energy: nDOM >= 7

Muon: nDOM >= 4; 5-200 GeV

Muon, PID, Vertex: nhits >= 8 hit 5-200 GeV

Zenith: full containment cut on true vertexes, 5-300GeV

Performance: Speed

	Second per file (~3k events)	Time for full sample assuming 1000 cores
CNN on GPU	21	~ 13 minutes
CNN on CPU	45	~ 7.5 hours
Current Likelihood-based method (CPU only)	120,000	~ 46 days

- CNN runtime improvement: ~3,000 times faster;
 - CNNs are able to process in parallelize with clusters → can be even faster!
- Big advantage: large production of full Monte Carlo simulations ~O(10⁸).

Testing Samples

- Nominal MC sample with flux, xsec, and oscillation weights applied;
- Testing on signal (v_{μ} CC) and major background (v_{e} CC);
- Baseline: current reconstruction method (likelihood-based)

Performance: Vertex

- Selecting events starting near DeepCore;
- Comparable purities in selected v_{μ} CC samples.

Performance: Muon and PID Classifiers

- Comparable performance to the current methods:
 - Similar AUC values.
- Hard to identify track from cascades at low energy → less DOMs see photons.

Performance: Energy

- Flat median against true neutrino energy;
 - CNN has better resolution at low energy (majority of sample)
- Comparable performance to current method at higher energy and in background;

Performance: Zenith

- Flat median against true direction;
- Comparable to current method in both signal and background.

