DUNE long-baseline oscillation physics sensitivity

Callum Wilkinson on behalf of the DUNE collaboration

Lawrence Berkeley National Laboratory TAUP 2023, 28th August 2022

DUNE

- L ≈ 1285 km; E_ν≈ 2.5 GeV (*broad band*); liquid argon time projection chamber (LArTPC)
- Unprecedented intensity neutrino beam (1.2 → 2.4 MW)
- Near detector system at Fermilab
- 4 x 17 kt far detector modules at SURF

Far Detector (FD)

 4 x 17 kt modules, minimum 10 kt FV each (initial 2 x LAr)

 Full FD1 simulation and reconstruction: <u>PRD102, 092003 (2020)</u>

> <u>See R. Huang's talk for</u> <u>details (Tuesday 14:45)</u>

FD samples

Four samples in analysis:

- $\nu_{\mu} \& \nu_{e}$
- In ν and $\overline{\nu}$ enhanced modes

Near Detector (ND)

Core requirements:

- Constrain neutrino flux
- Constrain v/\bar{v} -Ar interactions
- Exceed FD energy resolutions
- Tolerate high rate environment

Near Detector (ND)

Core requirements:

- Constrain neutrino flux
- Constrain $\sqrt{\nu}$ -Ar interactions
- Exceed FD energy resolutions
- Tolerate high rate environment

Three major components:

- 1 Core 150 t LArTPC with pixelated readout
- 2 Downstream magnetized tracker
- **3 -** SAND: dedicated beam monitor

<u>See B. Russell's talk for</u> <u>details (Tuesday 14:30)</u>

ND CDR: Instruments 2021, 5(4), 31

Analysis summary

Muon (anti)neutrino disappearance

$$P(\bar{\nu}_{\mu}^{0} \rightarrow \bar{\nu}_{\mu}^{0}) = 1 - (\cos^{4}\theta_{13}\sin^{2}2\theta_{23} + \sin^{2}2\theta_{13}\sin^{2}\theta_{23})\sin^{2}\Phi_{32} + \dots$$

$$\Phi_{ji} = \frac{1.27\Delta m_{ji}^2 L}{E_{\nu}}$$

90% confidence

MO & CPV sensitivity

Sensitivity through a combination of v_e and $\overline{v_e}$ samples. Both rate and spectral shape matter

Toy throw study method

Parameter	Prior	Range
$\sin^2 \theta_{23}$	Uniform	[0.4; 0.6]
$ \Delta m_{32}^2 \; (imes 10^{-3} \; { m eV}^2)$	Uniform	[2.3; 2.7]
$\delta_{\mathrm{CP}}/~\pi$	Uniform	[-1;1]
$ heta_{13}$	Gaussian	NuFIT 4.0*

*JHEP 01 (2019) 106

- For each toy throw:
 - Flux, detector and cross-section systematics thrown according to their prior uncertainty
 - Oscillation parameters thrown according to the table
 - Statistical throw applied
 - All parameters are allowed to vary
- All fits use all ND+FD samples, equal $v:\overline{v}$ running, and apply a Gaussian penalty to θ_{13}

MO sensitivity

Strong MO potential with short exposures

Probability < 0.01 to prefer the wrong neutrino mass ordering after 66 kt-MW-yr

CPV sensitivity

Median and central 68% of throws shown for 336 and 624 kt-MW-yr exposures

 $>5\sigma$ discovery potential for >50% of δ_{CP} values

CPV sensitivity

Syst.+stat. throws exceeding 1-5 σ significance thresholds \approx 100 kt-MW-yr, 3 σ at maximal δ_{CP} \approx 200 kt-MW-yr, 3 σ for 50% of δ_{CP} values

δ_{CP} resolution

7–16° δ_{CP} resolution **regardless of true value**

Not just CPV!

DUNE precision measurements

- Expected DUNE resolution vs exposure and current global fit (NuFit 5.0: JHEP 09 (2020) 178)
- Ultimate sensitivity approaches reactor θ_{13}
- Constrain $\delta_{_{CP}},\,\Delta m^{_2}_{_{32}},\,\theta_{_{23}},\,\theta_{_{13}}$ and MO with a single experiment

DUNE oscillation summary

Unambiguous MO measurement

Strong CPV discovery potential

Precision osc. parameter measurements

Broad spectral measurements will stress test the U_{PMNS} model – <u>is anything missing?</u>

Part of a broader physics program!

<u>See C. Cuesta Soria's</u> <u>talk (Thursday 15:00)</u>

Credit: Symmetry Magazine / Sandbox Studio Chicago

Credit: Higgstan

See M. Sanchez's talk (Tuesday 9:30)

