Status of the Short Baseline Near Detector at Fermilab

Lauren Yates (Fermilab)
On Behalf of the SBND Collaboration

TAUP 2023 — University of Vienna August 28, 2023

The Short Baseline Neutrino Program at Fermilab

- The Short Baseline Neutrino (SBN) Program at Fermilab consists of three LArTPC detectors, all in Fermilab's Booster Neutrino Beam (BNB) but at different baselines
- BNB is a primarily muon neutrino beam, with a mean ν_{μ} energy of ~0.8 GeV and ν_{μ} purity of ~94%
 - ~6% contamination from $\bar{\nu}_{\mu}$, ~0.5% $\nu_e + \bar{\nu}_e$
- SBN Program aims to conclusively address the possibility of eV-scale sterile neutrino oscillations
- SBND also has a rich single-detector physics program including neutrino—argon cross sections measurements and new and rare physics searches
- Will lay important groundwork for future experiments using LArTPC detectors, such as DUNE

Detecting Neutrino Interactions with a LArTPC

The SBND Detector

LArTPC

Active mass is 112 t Active volume is 4×4×5 m³

Cold Electronics (in LAr)
pre-amplify and digitize
TPC wire signals

Cathode Plane at -100 kV divides the detector into two drift volumes

Drift distance is 2 m, max. drift time is ~1.28 ms

Field Cage wraps around the two TPCs to step down the voltage and ensure a uniform electric field of 500 V/cm

Anode Plane on either side, each with three wire planes with 3 mm wire spacing and different orientation per plane

Total of 11,260 wires

The SBND Detector

Photon Detection System

24 PDS Boxes behind the anode wire planes

5×24 = **120 8" PMTs** 80% TPB-coated, 20% uncoated

8×24 = **192 X-ARAPUCAs** half with wavelength-shifting

Cathode Plane with TPB-coated reflective foils mounted behind mesh panels

Trigger System

T. Kroupová SBND Hardware Trigger System

Tuesday at 3pm in Hörsaal 21

Cosmic Ray Tagger

SBND Assembly & Installation

SBND Assembly & Installation

- Detector assembly and installation for all components inside the cryostat is complete, and bottom and north CRT walls are already in place
- Currently working on cabling all systems from cryostat flanges to readout electronics racks, and in parallel with that on the final parts of cryogenics installation
- Expect to fill the cryostat with liquid argon later this year

Detecting Neutrino Interactions with SBND

- LArTPC capabilities enable low reconstruction thresholds and excellent particle identification for interactions in SBND
- Fine resolution also enables disentangling complex final states
- In comparable LArTPC detectors, isolated energy deposits can be identified down to O(100) keV expect similar from SBND
 - Opportunity to study MeV-scale activity, e.g. from neutron scatters

Neutrino Interaction Rates in SBND

- SBND expects approximately 2 million ν_{μ} CC and 15,000 ν_{e} CC interactions per year, and will collect beam neutrino data over the course of a ~3 year run
- Will record an order of magnitude more neutrino-argon interactions than currently available
- Enables a generational advance in the study of neutrino-argon interactions in the GeV energy range

Neutrino Interaction Measurements in SBND

- High statistics in SBND will allow a wide variety of neutrino interaction measurements
 - For more common channels, SBND can make multi-dimensional differential measurements
 - For rare channels, SBND can make measurements that are not possible in other existing experiments
- A quick sampler of measurement channels that are being worked on...
 - ν_{μ} CC inclusive
 - v_{μ} CC Np 0π
 - $\rightarrow \nu_{\mu}$ CC Np $1\pi^{0}$
 - $\rightarrow \nu_{\mu}$ CC Np $1\pi^{\pm}$
 - $\overline{\nu}_{\mu}$ CC quasielastic hyperon production $(\Lambda^{0}, \Sigma^{0}, \Sigma^{-})$
 - v_{μ} CC inelastic kaon production (K+ + Λ^{0})

- ▶ v_e CC inclusive
- NC Np 0π
- NC Np $1\pi^0$
- NC Np 1γ
- Neutrino-electron elastic scattering
- ... more to come!

Sterile Neutrinos and Other BSM Physics in SBND

- SBND contributes to the SBN Program as the near detector, characterizing the beam before eV-scale oscillations set in and thus addressing dominant systematic uncertainties
 - SBN has a unique chance to jointly study ν_e appearance, ν_μ disappearance, and ν_e disappearance
- In addition, SBND will pursue other possible explanations for the MiniBooNE low-energy excess anomaly as well as other beyond Standard Model physics scenarios
 - Actively collaborating with theorists to explore possibilities for BSM searches with our detector

A Closer Look at the Booster Neutrino Beam

• SBND is so close to BNB target that it sees neutrinos from a range of off-axis angles (OAAs)

SBND-PRISM

- Off-axis angle directly corresponds to the neutrino interaction vertex position
- The flux spectrum evolves as a function of the off-axis angle
 - Further off-axis fluxes peak lower and tighter
- Allows SBND to leverage PRISM concept

Summary & Outlook

- SBND experiment is in the final stages of installation, preparing for commissioning, and is on-track to start operations in 2024
- The highly-capable LArTPC detector technology combined with SBND's close proximity to the BNB target and resulting high statistics will enable a wide variety of measurements
- SBND's physics program includes:
 - Serving as the near detector for the SBN oscillation analyses searching for eV-scale sterile neutrinos
 - Studying neutrino—argon cross sections at the GeV scale
 - Searching for new and rare physics processes in the neutrino sector and beyond
- SBND-PRISM provides a unique opportunity to probe different neutrino fluxes within the same stationary detector

Thank you! Danke!

Additional Slides

Booster Neutrino Beam Flux at SBND

- The primary beam of interest at SBND is the Booster Neutrino Beam (BNB)
- The mean energy for muon neutrinos is about 0.8 GeV
- Beam composition by neutrino flavor:
 - 93.6% v_{μ}
 - 5.9% $\bar{\nu}_{\mu}$
 - $0.5\% v_e + \overline{v}_e$
- Plan to collect data corresponding to 10e20–18e20 protons on target (POT) over the course of a 3–4 year run

Reconstructing Protons in SBND

- In SBND's simulation, Pandora reconstruction achieves a proton tracking threshold around 40 MeV (blue curve)
 - Pandora is a standard pattern recognition package, and is used in many LArTPC experiments
- In addition, we have developed a targeted algorithm to analyze heavy ionization deposits near the vertex to identify low energy protons (orange curve)
 - Works on top of existing Pandora reconstruction
- This pushes the proton identification threshold down below 15 MeV (green curve)

Pandora pattern recognition: Eur. Phys. J. C 78, 82 (2018)

Reconstructing Protons in SBND

- Below: table showing relationship between proton momentum, kinetic energy, and length in LAr
- Left: event display showing an interaction where there is a proton with kinetic energy of 12 MeV in the final state, which was tagged using calorimetry
 - Calorimetry able to identify the presence of a proton, but difficult to get any kinematic details

T _p (MeV)	p _p (MeV/c)	Length (cm)
20	195	~0.4
50	310	~2
100	445	~8
200	644	~26

Neutrino Interactions on Argon

- Understanding and modeling neutrino interactions is essential for interpreting final state particle content and kinematics to extract information about the initial state neutrino
- Theory of neutrino interactions on argon (A=40) is complex due to multiple processes, nuclear effects, and final-state interactions

Neutrino Interactions on Argon

- A robust program of neutrino cross-section measurements is key to benchmarking models and improving them and SBND expects to be a major contributor in the years ahead
- SBND is primarily using GENIE for simulating neutrino interactions, while also working to incorporate alternative generators such as GiBUU

Neutrino Interactions by Event Topology in SBND

- High statistics in SBND will allow a wide variety of neutrino interaction measurements
 - For more common channels, SBND can make multi-dimensional differential measurements
 - For rare channels, SBND can make measurements that are not possible in other existing experiments
- Based on SBND simulations using GENIE v3.0.6 G18_10a_02_11a and 10e20 POT...
 - 6 million v_{μ} CC inclusive interactions
 - 4.3 million v_{μ} CC Np 0π
 - 2.5 million v_{μ} CC 1p0 π
 - 0.7 million v_{μ} CC $2p0\pi$
 - 0.9 million v_{μ} CC $1\pi^{\pm} + X$
 - 0.5 million v_{μ} CC $1\pi^0$ + X
 - ► 0.4 million v_{μ} CC $\geq 2\pi + X$

•
$$\sim 600 \nu_{\mu}$$
 CC K+K- + X

► ~700
$$\nu_{\mu}$$
 CC $K^{0}\overline{K}^{0}$ + X

- > >1,000 v_{μ} CC with charm baryons
- ► ~45,000 v_e CC inclusive interactions
- ► 2.5 million NC inclusive interactions
 - 1.7 million NC $0\pi + X$
 - 0.5 million NC $1\pi^0 + X$

R. Jones PhD thesis

Neutrino Interaction Rates by Process in SBND

• Based on SBND simulations using GENIE v3.0.6 G18_10a_02_11a and 10e20 POT...

CC Process	Number of Events
QE	3.3 million
MEC	0.7 million
RES	1.8 million
DIS	0.3 million
Coherent	~11,000
Other	~3,600

NC Process	Number of Events
QE	1.3 million
MEC	0.2 million
RES	0.8 million
DIS	0.2 million
Coherent	~8,900
Other	~500

R. Jones PhD thesis

What's In GENIE v3.0.6 G18_10a_02_11a?

- This is one of the comprehensive model configurations provided by GENIE v3
- The physics models include:
 - Local Fermi gas model for the initial nuclear state
 - Valencia model CC QE and 2p2h interactions, including the random phase approximation (RPA) description of long-range nucleon–nucleon correlations that suppresses CCQE at low Q²
 - Berger Sehgal model of resonant and coherent pion production
 - Bodek–Yang model for deep inelastic scattering interactions
 - Semi-classical empirical model (hA2018) for final state interactions, including tuning of FSI parameters updated based on world data in 2018
- More information in <u>Phys. Rev. D 104, 072009 (2021)</u>

SBND Interactions vs. the DUNE Phase Space

- SBND interactions will cover significant parts of kinematic phase space relevant for DUNE, including energy range spanning first and second oscillation maxima
- Have the opportunity to map out the argon nuclear response to neutrino probes from the quasielastic region to the resonance region and beyond

SBN Oscillation Sensitivities

ν_e Appearance vs. ν_μ Disappearance in Short Baseline Anomalies

- Some experiments studying v_{μ} beams at short baselines (≤ 0.01 km/MeV) have observed anomalous appearance of v_e that could indicate sterile-induced oscillations
- However, other experiments looking for the same signatures or for ν_{μ} and ν_{e} disappearance don't see anomalies conflicting results create tension when performing global fits
- The simple case of one sterile neutrino (3+1) seems unlikely but other new physics involving sterile neutrinos is still plausible

	$ u_{\mu} ightarrow u_{e}$	$ u_{\mu} ightarrow u_{\mu}$	$ u_e ightarrow u_e$
Neutrino	MiniBooNE (BNB) *	SciBooNE/MiniBooNE	KARMEN/LSND cross section
	MiniBooNE (NuMI)	CCFR	SAGE/GALLEX *
	NOMAD	CDHS	,
		MINOS	
Antineutrino	LSND *	SciBooNE/MiniBooNE	Bugey
	KARMEN	CCFR	NEOS
	MiniBooNE (BNB) *	MINOS	DANSS *
	, ,		PROSPECT
			STEREO
Experiments denoted with * have a >2σ signal			Neutrino-4 *

SBND-PRISM for ν_{μ} vs. ν_{e}

- Due to meson decay kinematics, v_e are distributed more evenly across the face of SBND
- The ν_{μ} come from two-body decays, while ν_{e} generally come from three-body decays and thus have larger angular spread from the beam axis

