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The Short Baseline Neutrino Program at Fermilab
• The Short Baseline Neutrino (SBN) Program at Fermilab 

consists of three LArTPC detectors, all in Fermilab’s 
Booster Neutrino Beam (BNB) but at different baselines 

• BNB is a primarily muon neutrino beam, with a mean 
νμ energy of ~0.8 GeV and νμ purity of ~94% 
‣ ~6% contamination from νμ, ~0.5% νe+νe 

• SBN Program aims to conclusively address the 
possibility of eV-scale sterile neutrino oscillations 

• SBND also has a rich single-detector physics program 
including neutrino–argon cross sections measurements 
and new and rare physics searches 

• Will lay important groundwork for future experiments 
using LArTPC detectors, such as DUNE
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Y
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Detecting Neutrino Interactions with a LArTPC

• LArTPCs are highly-capable, 
fully-active tracking calorimeters 

• Precise timing information also 
available via scintillation light
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The SBND Detector
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Cold  Electronics (in LAr) 
pre-amplify and digitize 

TPC wire signals 

Cathode Plane at −100 kV 
divides the detector into two 

drift volumes 

Drift distance is 2 m, 
max. drift time is ~1.28 ms

Anode Plane on either side, 
each with three wire planes 
with 3 mm wire spacing and 

different orientation per plane 

Total of 11,260 wires

Field Cage wraps around 
the two TPCs to step down 

the voltage and ensure a uniform 
electric field of 500 V/cm

LArTPC 
Active mass is 112 t 

Active volume is 4×4×5 m3
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The SBND Detector
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Cryostat
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Cosmic 
ray

Cosmic Ray Tagger
(225 m2 active area)

(160 m2 active area)

Scintillator strips 
with SiPM readout 

Two layers with 
perpendicular strips 

for accurate positions 

142×32 channels 

Photon Detection System

24 PDS Boxes 
behind the anode wire planes 

5×24 = 120 8” PMTs 
80% TPB-coated, 

20% uncoated 

8×24 = 192 X-ARAPUCAs 
half with wavelength-shifting

Cathode Plane with 
TPB-coated reflective foils 

mounted behind mesh panels

Trigger System

T. Kroupová 
SBND Hardware 
Trigger System 

Tuesday at 3pm in 
Hörsaal 21

https://indico.cern.ch/event/1199289/contributions/5447225/
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Detector into the Cryostat, Apr. 2023

APA Assembly, Dec. 2018

SBND Assembly & Installation
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APA Installation, Oct. 2021

CE Installation, May 2022 PDS Box 
Installation, 
Sep. 2022

Detector to SBND, Dec. 2022
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Cathode HV Feedthrough 
Installation, Jul. 2023

SBND Assembly & Installation

• Detector assembly and installation for all components inside the cryostat is complete, and 
bottom and north CRT walls are already in place 

• Currently working on cabling all systems from cryostat flanges to readout electronics racks, 
and in parallel with that on the final parts of cryogenics installation 

• Expect to fill the cryostat with liquid argon later this year
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Detector inside the 
Cryostat, Apr. 2023

North CRT Wall 
Installation, May 2023
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Detecting Neutrino Interactions with SBND
• LArTPC capabilities enable low reconstruction thresholds and 

excellent particle identification for interactions in SBND 

• Fine resolution also enables disentangling complex final states 

• In comparable LArTPC detectors, isolated energy deposits can 
be identified down to O(100) keV — expect similar from SBND 

‣ Opportunity to study MeV-scale activity, e.g. from neutron scatters
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Neutrino Interaction Rates in SBND
• SBND expects approximately 2 million νμ CC and 15,000 νe CC interactions per year, and will 

collect beam neutrino data over the course of a ~3 year run 

• Will record an order of magnitude more neutrino–argon interactions than currently available 

• Enables a generational advance in the study of neutrino–argon interactions in the GeV energy range
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• High statistics in SBND will allow a wide variety of neutrino interaction measurements 

‣ For more common channels, SBND can make multi-dimensional differential measurements 

‣ For rare channels, SBND can make measurements that are not possible in other existing experiments 

• A quick sampler of measurement channels that are being worked on…

Neutrino Interaction Measurements in SBND
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‣ νμ CC inclusive  

‣ νμ CC Np 0π  

‣ νμ CC Np 1π0  

‣ νμ CC Np 1π±  

‣ νμ CC quasielastic hyperon production 
(Λ0, Σ0, Σ−)  

‣ νμ CC inelastic kaon production (K+ + Λ0)  

‣ νe CC inclusive  

‣ NC Np 0π  

‣ NC Np 1π0  

‣ NC Np 1γ  

‣ Neutrino–electron elastic scattering  

‣ … more to come!
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Sterile Neutrinos and Other BSM Physics in SBND
• SBND contributes to the SBN Program as the near detector, characterizing the beam before 

eV-scale oscillations set in and thus addressing dominant systematic uncertainties 

‣ SBN has a unique chance to jointly study νe appearance, νμ disappearance, and νe disappearance 

• In addition, SBND will pursue other possible explanations for the MiniBooNE low-energy 
excess anomaly as well as other beyond Standard Model physics scenarios 

‣ Actively collaborating with theorists to explore possibilities for BSM searches with our detector
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A Closer Look at the Booster Neutrino Beam
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Figure courtesy of M. Del Tutto

• SBND is so close to BNB target that it sees neutrinos from a range of off-axis angles (OAAs) 

‣ Off-axis angles are calculated with respect to the BNB target position
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SBND-PRISM
• Off-axis angle directly corresponds to the 

neutrino interaction vertex position 

• The flux spectrum evolves as a function 
of the off-axis angle 

‣ Further off-axis fluxes peak lower and tighter 

• Allows SBND to leverage PRISM concept
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nuPRISM proposal: 
arXiv:1412.3086

SBND Simulation

https://arxiv.org/abs/1412.3086
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Summary & Outlook
• SBND experiment is in the final stages of installation, preparing for commissioning, and is 

on-track to start operations in 2024 

• The highly-capable LArTPC detector technology combined with SBND’s close proximity to 
the BNB target and resulting high statistics will enable a wide variety of measurements 

• SBND’s physics program includes: 

‣ Serving as the near detector for the SBN oscillation analyses searching for eV-scale sterile neutrinos 

‣ Studying neutrino–argon cross sections at the GeV scale 

‣ Searching for new and rare physics processes in the neutrino sector and beyond 

• SBND-PRISM provides a unique opportunity to probe different neutrino fluxes within the 
same stationary detector

14



L. Yates︱Status of SBND at Fermilab︱TAUP 2023

Thank you! Danke!
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SBND Collaboration Meeting 
University of Texas at Arlington, June 2023
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Additional Slides
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Booster Neutrino Beam Flux at SBND

• The primary beam of interest at SBND 
is the Booster Neutrino Beam (BNB) 

• The mean energy for muon neutrinos 
is about 0.8 GeV 

• Beam composition by neutrino flavor: 

‣ 93.6% νμ 

‣ 5.9% νμ 

‣ 0.5% νe+νe 

• Plan to collect data corresponding to 
10e20–18e20 protons on target (POT) 
over the course of a 3–4 year run
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Reconstructing Protons in SBND
• In SBND’s simulation, Pandora reconstruction 

achieves a proton tracking threshold around 
40 MeV (blue curve) 

‣ Pandora is a standard pattern recognition package, 
and is used in many LArTPC experiments 

• In addition, we have developed a targeted 
algorithm to analyze heavy ionization deposits 
near the vertex to identify low energy protons 
(orange curve) 

‣ Works on top of existing Pandora reconstruction 

• This pushes the proton identification threshold 
down below 15 MeV (green curve)
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Pandora pattern recognition: 
Eur. Phys. J. C 78, 82 (2018)

SBND Simulation

Collection

Final state: 1μ 1p
Tp = 12 MeV

pp = 0.15 GeV/c

μ
p

https://link.springer.com/article/10.1140/epjc/s10052-017-5481-6
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Reconstructing Protons in SBND
• Below: table showing relationship between proton 

momentum, kinetic energy, and length in LAr 

• Left: event display showing an interaction where 
there is a proton with kinetic energy of 12 MeV in 
the final state, which was tagged using calorimetry 

‣ Calorimetry able to identify the presence of a proton, 
but difficult to get any kinematic details 
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SBND Simulation

νμ + Ar → μ + p
Tp = 12 MeV

Collection

Induction 1

Induction 2

Tp (MeV) pp (MeV/c) Length (cm)

20 195 ~0.4

50 310 ~2

100 445 ~8

200 644 ~26
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Neutrino Interactions on Argon
• Understanding and modeling neutrino interactions is essential for interpreting final state 

particle content and kinematics to extract information about the initial state neutrino 

• Theory of neutrino interactions on argon (A=40) is complex due to multiple processes, 
nuclear effects, and final-state interactions
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PPNP 100, 1–68 (2018)

Rev. Mod. Phys. 84, 1307 (2012)

BNB Flux

https://www.sciencedirect.com/science/article/pii/S0146641018300061
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.84.1307
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Neutrino Interactions on Argon
• A robust program of neutrino cross-section measurements is key to benchmarking models 

and improving them — and SBND expects to be a major contributor in the years ahead 

• SBND is primarily using GENIE for simulating neutrino interactions, while also working to 
incorporate alternative generators such as GiBUU
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PPNP 100, 1–68 (2018)

Rev. Mod. Phys. 84, 1307 (2012)

BNB Flux

https://www.sciencedirect.com/science/article/pii/S0146641018300061
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.84.1307
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• High statistics in SBND will allow a wide variety of neutrino interaction measurements 

‣ For more common channels, SBND can make multi-dimensional differential measurements 

‣ For rare channels, SBND can make measurements that are not possible in other existing experiments 

• Based on SBND simulations using GENIE v3.0.6 G18_10a_02_11a and 10e20 POT… 

‣‣ 6 million νμ CC inclusive interactions 

‣ 4.3 million νμ CC Np0π 

‣ 2.5 million νμ CC 1p0π 

‣ 0.7 million νμ CC 2p0π 

‣ 0.9 million νμ CC 1π± + X

‣ 0.5 million νμ CC 1π0 + X

‣ 0.4 million νμ CC ≥2π + X

‣ ~600 νμ CC K+K− + X 

‣ ~700 νμ CC K0K0 + X 

‣ >1,000 νμ CC with charm baryons 

‣ ~45,000 νe CC inclusive interactions 

‣ 2.5 million NC inclusive interactions 

‣ 1.7 million NC 0π + X 

‣ 0.5 million NC 1π0 + X

Neutrino Interactions by Event Topology in SBND
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R. Jones PhD thesis

https://inspirehep.net/literature/1991462
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Neutrino Interaction Rates by Process in SBND
• Based on SBND simulations using GENIE v3.0.6 G18_10a_02_11a and 10e20 POT…
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CC Process Number of Events

QE 3.3 million

MEC 0.7 million

RES 1.8 million

DIS 0.3 million

Coherent ~11,000

Other ~3,600

NC Process Number of Events

QE 1.3 million

MEC 0.2 million

RES 0.8 million

DIS 0.2 million

Coherent ~8,900

Other ~500

R. Jones PhD thesis

https://inspirehep.net/literature/1991462
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What’s In GENIE v3.0.6 G18_10a_02_11a?
• This is one of the comprehensive model configurations provided by GENIE v3 

• The physics models include: 

‣ Local Fermi gas model for the initial nuclear state 

‣ Valencia model CC QE and 2p2h interactions, including the random phase approximation (RPA) 
description of long-range nucleon–nucleon correlations that suppresses CCQE at low Q2 

‣ Berger Sehgal model of resonant and coherent pion production 

‣ Bodek–Yang model for deep inelastic scattering interactions 

‣ Semi-classical empirical model (hA2018) for final state interactions, including tuning of FSI 
parameters updated based on world data in 2018 

• More information in Phys. Rev. D 104, 072009 (2021)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072009
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SBND Interactions vs. the DUNE Phase Space
• SBND interactions will cover significant parts of kinematic phase space relevant for DUNE, 

including energy range spanning first and second oscillation maxima 

• Have the opportunity to map out the argon nuclear response to neutrino probes from the 
quasielastic region to the resonance region and beyond
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SBN Oscillation Sensitivities
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SBN Preliminary
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νe Appearance vs. νμ Disappearance in Short Baseline Anomalies

• Some experiments studying νμ beams at short baselines (≲0.01 km/MeV) have observed 
anomalous appearance of νe that could indicate sterile-induced oscillations 

• However, other experiments looking for the same signatures or for νμ and νe disappearance 
don’t see anomalies — conflicting results create tension when performing global fits 

• The simple case of one sterile neutrino (3+1) seems unlikely but other new physics 
involving sterile neutrinos is still plausible
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Experiments denoted with * have a >2σ signal
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SBND-PRISM for νμ vs. νe

• Due to meson decay kinematics, νe are distributed more evenly across the face of SBND 

• The νμ come from two-body decays, while νe generally come from three-body decays and 
thus have larger angular spread from the beam axis
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νμ CC events νe CC events


