Long-Range Interactions of $L_{\mu}-L_{\tau}$ symmetry at INO-ICAL

Amina Khatun¹ and Sanjib K. Agarwalla^{2,3} (For the INO Collaboration^a)

¹ Comenius University, Slovakia (Presenter: amina.khatun@fmph.uniba.sk)

a http://www.ino.tifr.res.in

Long-range Neutrino Interactions due to $L_{\mu}-L_{ au}$ symmetry

- We focus on new interactions generated by the anomaly-free, gauged, abelian lepton-number symmetry $L_{\mu}-L_{\tau}$. This is a renormalizable and minimal extension of the Standard Model (SM).
- Due to neutrino flavor oscillation, this symmetry must be broken, which gives rise to a new gauge boson Z'. This Z' can mix with Z and introduces a four-fermion neutrino matter interaction term via Z Z' mixing (Phys. Rev. D 57 (1998) 6788):

• Under $L_{\mu}-L_{\tau}$ symmetry, a neutrino experiences a flavor-dependent Yukawa interaction with a range $\sim 1/m'_{\mu\tau}$. If the mass of the new gauge boson is ultralight ($m'_{\mu\tau}\sim 0$), then the interaction is long ranged, which is denoted as Long-Range Interaction (LRI).

New Flavor-diagonal NC Interactions for Atmospheric Neutrinos

- Coherent forward elastic interactions of terrestrial neutrinos with electron, proton, and neutron in Sun produce new potentials.
- Contributions from electrons and protons cancel each other, thus only neutrons contribute to the extra potential for terrestrial neutrinos and antineutrinos.
- For $1/m_{\mu\tau}>$ Earth-Sun distance $(R_{\rm SE})$ or $m_{\mu\tau}\ll 1~{\rm AU}^{-1}\approx 1.32\times 10^{-18}~{\rm eV},$ effective potential due to neutrons in Sun is $V_{\mu\tau}^{\odot}=\alpha_{\mu\tau}\frac{e}{4\,s_W\,c_W}\frac{N_n^{\odot}}{4\pi\,R_{\rm SE}},$ where N_n^{\odot} is total number of neutrons in Sun.
- Due to neutrons in Earth, the effective LR potential is $V_{\mu\tau}^{\oplus} = \alpha_{\mu\tau} \frac{e}{4 \, s_W \, c_W} \frac{N_n^{\oplus}}{4 \pi \, R_{\oplus}}$, where N_n^{\oplus} is total number of neutrons in Earth, and R_{\oplus} is radius of Earth.
- Assuming proper neutron number density in the Sun, we get $V_{\mu au}^{\odot}=3.6 imes 10^{-14} imes rac{lpha_{\mu au}}{10^{-50}}$ eV.
- We get contribution from Earth's neutrons with PREM profile $V_{\mu au}^\oplus=0.79 imes10^{-14} imesrac{lpha_{\mu au}}{10^{-50}}$ eV.

The total LRI induced potential for the neutrons in Sun and Earth is

$$V_{\mu\tau} = V_{\mu\tau}^{\odot} + V_{\mu\tau}^{\oplus} = 4.4 \times 10^{-14} \times \frac{\alpha_{\mu\tau}}{10^{-50}} \text{ eV}.$$
 (1)

The parameter $\alpha_{\mu\tau}$ is combination of coupling strength of LRI and Z-Z' mixing parameters \checkmark For antineutrino, the sign of $V_{\mu\tau}$ is reversed

Impact of LRI on the Evolution of Neutrinos

The Effective Hamiltonian in presence matter and LRI of $L_{\mu}-L_{\tau}$ symmetry is

$$H_f = U \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \frac{\Delta m_{21}^2}{2E} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \frac{\Delta m_{31}^2}{2E_{\nu}} \end{bmatrix} U^{\dagger} + \begin{bmatrix} V_{CC} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & V_{\mu\tau} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & -V_{\mu\tau} \end{bmatrix} ,$$

U : PMNS matrix, V_{CC} : Matter induced potential

 $lpha_{\mu au}\sim 5 imes 10^{-50}$ corresponds to the LR potential $(2.2 imes 10^{-13}~{
m eV})$ which is similar to the value of $\Delta m^2_{31}/2E_{
u}$ $(2.5 imes 10^{-13}~{
m eV})$ with $\Delta m^2_{31}=2.5 imes 10^{-3}~{
m eV}^2$ and $E_{
u}=5$ GeV, thus is expected to affect neutrino and antineutrino oscillations.

Impact on oscillations of neutrino and antineutrino with LRI

Figure 1: The variation of 2-3 mixing angle with neutrino energy for 5000 km baseline and normal mass ordering.

- In the presence of LRI, θ_{23}^m changes from its vacuum value (θ_{23}) in opposite ways for neutrino and antineutrino. Depending on whether it approaches 45°, the survival probabilities of neutrinos change differently with different θ_{23} .
- With $\sin^2\theta_{23}=0.5$, $P(\nu_{\mu}\to\nu_{\mu})$ is higher with SI+LRI than with SI for neutrino as well as antineutrino.
- With $\sin^2\theta_{23} \neq 0.5$, when θ_{23}^m approaches 45° , $P(\nu_\mu \to \nu_\mu)$ with SI + LRI is smaller than SI.

Figure 2: Difference of $P(\nu_{\mu} \to \nu_{\mu}) + 0.5 \times P(\nu_e \to \nu_{\mu})$ between SI $(\alpha_{\mu\tau} = 0)$ and SI + LRI $(\alpha_{\mu\tau} = 5.5 \times 10^{-51})$.

Important Features of Proposed ICAL Detector at INO

- Optimized for multi-GeV energy and wide ranges of baselines
- Good energy and direction resolutions for muons: in multi-GeV energy range, energy resolution for muons \sim 10% to 15%, direction resolution is < 1°.
- Excellent charge identification capability (CID): distinguish μ^- from μ^+ , thus ν_μ from $\bar{\nu}_\mu$ CC interactions with $\sim 99\%$ efficiency. JINST 9 (2014) P07001
- Reconstruction of hadron energy (E'_{had}): energy carried by hadrons at final state of neutrino and antineutrino interactions can be reconstructed at ICAL with a resolution of around 40%. JINST 8 (2013) P11003

Event Distributions at ICAL after 10 Years of Running

Figure 3: Difference in reconstructed μ^- events between SI ($\alpha_{\mu\tau}=0$) and SI + LRI ($\alpha_{\mu\tau}=5.5\times10^{-51}$).

Figure 4: Difference in reconstructed μ^+ events between SI ($\alpha_{\mu\tau}=0$) and SI + LRI ($\alpha_{\mu\tau}=5.5\times10^{-51}$).

In presence of non-zero $\alpha_{\mu\tau}$, μ^- and μ^+ events are obtained to be higher in number than that with $\alpha_{\mu\tau}=0$ (SI), except for μ^- events with θ_{23} in low octant and for μ^+ with in θ_{23} in high octant at around reconstructed muon energy \sim 2 GeV.

Sensitivity of ICAL to Constrain $lpha_{\mu au}$ with 10 Years data

✓ Binning scheme: 12 E_{μ} bins in [1, 21] GeV, 15 cos θ bins in [-1, 1], and 4 $E'_{\rm had}$ bins in [0, 25] GeV, for both μ^- and μ^+ events. Poissonian χ^2 is used with systematic uncertainties using pull method.

✓ Results are marginalized over systematics as well as the oscillation parameters over current 3σ allowed ranges of θ_{23} , Δm_{31}^2 , and choices of neutrino mass hierarchy (normal and inverted ordering).

- MINOS anomaly (it has disappeared later) was resolved with $\alpha_{\mu\tau}=1.5\times10^{-50}\,$ J.Phys. G38 (2011)
- From gravitational fifth force searches, based on lunar ranging and torsion balance experiments, the constraint is $\alpha_{\mu\tau} < 5 \times 10^{-24}$. Phys. Rev. Lett. 100 (2008)

Summary and Concluding Remarks

- •ICAL will provide constraint $lpha_{\mu\tau} < 2.82 imes 10^{-51}$ at 3σ C.L. with 500 kt·yr exposure and θ_{23} (true)= 45° .
- The charge identification capability of ICAL helps to improve the limit on $\alpha_{\mu\tau}$.

ICAL will play an important role in breaking the degeneracy between the octant of θ_{23} and neutrino polarities due to LRI of $L_{\mu}-L_{\tau}$ symmetry using separate data of μ^- and μ^+ .