

The 2x2 Demonstrator

A demonstrator for the DUNE ND-LAr Near Detector based on the ArgonCube Design

Brooke Russell on behalf of the DUNE Collaboration

TAUP 2023 @ University of Vienna August 29, 2023

Deep Underground Neutrino Experiment (DUNE)

Compare measured far detector (FD) spectrum to predicted FD spectrum with no neutrino oscillation (given near detector (ND) constraints) to infer neutrino transition probability

>> See C. Wilkinson's talk for long-baseline oscillation analysis details

DUNE Near Detector Complex

Three complementary detector systems working in concert to constrain

- neutrino flux
- interaction model
- detector response

 $\frac{dN_{\nu_e}^{far}}{dE_{rec}} = \int_{E_{\nu}} D_{\nu_e-CC}^{far,inclus.}(E_{rec};E_{\nu}) \, \sigma_{\nu_e-CC}^{inclus.,Ar}(E_{\nu}) \, P_{\mu e}(E_{\nu}) \, \Phi_{\nu_{\mu}}^{far}(E_{\nu}) \, |_{l=0} \, dE_{\nu}$ $\text{Near detector signal:} \quad \text{Far/near difference constrained by detector model} \quad \text{Far/near difference constrained by theory} \quad \text{Far/near difference constrained by model and near data model}$ $\frac{dN_{\nu_{\mu}-CC}^{near}}{dE_{rec}} = \int_{E_{\nu}} D_{\nu_{\mu}-CC,inclus.}^{near}(E_{rec};E_{\nu}) \, \sigma_{\nu_{\mu}-CC}^{inclus.,Ar}(E_{\nu}) \, \Phi_{\nu_{\mu}}^{near}(E_{\nu}) \, |_{l=near} \, dE_{\nu}$

ND-LAr Prototyping

2016-2019 Component technology R&D

- Low-profile field cage
- LArPix pixel readout
- High-photocoverage light readout

2020 SingleCube

60%-scale single light & charge readout detector elements

2021 ArgonCube Module-0

- 60%-scale fully-integrated detector module
- Four module cosmic-ray operation 2021-2023

2023-2025 ArgonCube 2x2 Demonstrator

 4x 60%-scale fully-integrated detector module in NuMI @ FNAL

2024 Full-scale Demonstrator

B. Russell | The 2x2 Demonstrator

Module Design a next-generation LArTPC

Key design driver: maintain signal fidelity in high occupancy environment (beam ν pileup!)

Pixelated Anode Tile (70x70 pixels) Cathode ArCLight Tile LCM Tiles 1.2 m 0.63 m **Resistive Field Sheet**

60%-scale ND-LAr module prototype

Optical segmentation

- Contained scintillation light to mitigate ν pileup

Modular TPCs

- Potential failures contained to finite sub-region

Short charge drift distance

- Reduce requirements/risks associated with HV, purity, and field uniformity

Low-profile field cage

- Reduce inactive volumes

High-photocoverage light readout

- ν pileup mitigation with ~10 cm spatial resolution and < 10 ns timing resolution

Pixelated charge readout

- ν pileup mitigation with true 3D readout
- Reduced sensitivity to system noise
- Scalable, mechanically robust, commercially produced PCB design

LArPix Concept

Low-power, integrating amplifier with self-triggered digitization and readout

Pixel dormant until signal exceeds tunable threshold

- Integrates charge for $\sim 3\mu s$ (4 mm drift), then digitizes
- Ready for next signal

Pixels are continuously active

- Serial I/O data rate is slow (~5 Mb/s per I/O channel) to limit digital power
- Modest data volumes: ~1 MB/s per square meter of anode in surface cosmic-ray flux

End-to-end system architecture – *large-format pixel* anode tiles, cables, feedthroughs, controller, etc.

- Hydra networking: dynamic chip-to-chip I/O routing
- Scalable to O(M) channel systems
- Single active component in cryogenic environment
- Minimal and redundant connections to cryostat
- Mechanically and cryogenically robust
- O(\$0.10) per channel system cost, incl. cables/controllers/assembly/etc.

Specification	Value	Comment
Analog inputs	64	Single-ended input
Gain	4.5 μV/e ⁻	
Power	<200 μW/channel	Static power dissipation
Dynamic range	1.3 V	Chip configurable
ADC resolution	8 bits	
ADC LSB	4 mV	Chip configurable
Threshold range	0 to 1.8 V	Channel configurable
Threshold resolution	1.5 mV	
Channel linearity	< 1.2%	Pre-calibration
Multi-hit separation time	1.2 μs	Chip configurable
Operating temperature	80 to 300 K	

LArPix System Performance

MIP response

- Consistent with expectation
- Stable through data taking

Mature charge readout system design

- Efficacy evaluated with prototype data
- >10k ASICs and O(100) pixel tiles tested to date

On-going development

- Improved ASIC physics performance
- Optimized pixel geometry
- Calibration
- Native 3D reconstruction

Specification	Value	Comment
Heat density	~13 mW/ASIC	
Pixel multiplexing	6.4k channels/cable	
Noise	~850 e ⁻ ENC	
Tile leakage current	$< 5 e^{-} / 500 \mu s$	
Charge resolution	< 1200 e ⁻	< 5% MIP charge
Spatial resolution	1.1 to 1.3 mm	Geometry dependent
Timing resolution	0.7 μs	Chip configurable
Saturation level	> 200 ke ⁻	
Triggering efficiency	~80% for MIP	
MIP S:N	>20:1	

Module QC @ University of Bern

2021-2023 successful deployment and operation of four fully-integrated ton-scale O(100k) pixel channel systems

Raw data with ~200 keV channel thresholds

Collected >100 M cosmic-ray events

DUNE preliminary

MINOS Underground Hall @ Fermilab

118.10

Proto-DUNE ND

Operating conditions

- On-axis operation in medium energy FNAL NuMI ν beam
- 107 m rock overburden (300 m.w.e.)
- 2.4 metric ton LAr target mass
- 25% optical coverage
- 337k charge-sensitive pixels at 4 mm pitch
- Continuous charge readout, independent of photon system trigger
- ~200 keV charge threshold

$\overline{\nu}$ -Ar physics

Technical demonstrations

- Signal reconstruction fidelity in high-intensity environment
- Evaluation of impact of uninstrumented volumes
- Assess LArTPC module performance in response to beam ν
- Exercise track matching with external trackers

2x2 Demonstrator

(20.24

Repurposed Minerva

module planes

 $\overline{\nu}$ -Ar physics

18.00

(•)

- (41.32) -

Summary

DUNE is a next-generation long-baseline neutrino oscillation program designed to measure neutrino mixing parameters to high precision

- ND-LAr is a critical component in the DUNE oscillation program
- Single module prototype performance have demonstrated cutting-edge, highly performant LArTPC design

Successfully produced, qualified, and deployed multiple O(100k) channel charge readout systems

- Low-noise, low-power cryogenic-compatible detector readout SOC ASIC
- Self-triggering, ~100% live true 3D pixelated charge readout for LArTPCs
- Full commercial production/assembly of system at O(\$0.10)/channel
- On-going R&D to realize the full promise of this technology

The 2x2 Demonstrator is a testbed to evaluate novel ND-LAr technologies in a ν beam

- Installation/commissioning Fall 2023
- ME NuMI RHC operation expected Winter 2023

