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Geoneutrinos: v, emitted by the Earth...

from the B~ decay of naturally-occurring radioactive elements in the
crust and mantle

U, Th, K account for >99% of Earth’s radiogenic heat production

(and a large fraction ~50% of Earth’s total heat flow)
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Bulk Earth Chemical Composition from Models
Abundance of K in the

C()mp() Slt] () ()f th@ Prlmltlve Mantle silicate Earth ranges from

130 to 280 ppm in
Refractories Moderately Volatlles compositional models

| W
. ‘ Measured K abundance only

Si .Ll 9 ~1/3 to ~1/8 of amounts in
carbonaceous chondrites

LithOphile - Where is the missing
potassium?
Elements - lost to space due to moderate
volatility?

- segregated in the Earth’s core?
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. Detected by KamLAND and Borexino
U and Th Geoneutrinos SO results coming seon: 1UNO wil

results have contributed to our understanding of U and Th radiogenic heat also be starting in the near future)
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Need a CC reaction target with
energy threshold < 1.3 MeV
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My talk @ Neutrino Geoscience
2005 in Hawaii presented all possible
reactions for 49K geoneutrino

detection

* CCnuclear target
* v-e ESscattering

coherent v-nucleus scattering
* NC nuclear excitation

- a few have been studied since
- the main problem (often ignored in
S0 T o 35 a0 a5 T 50 those studies) are backgrounds in

Ve Energy [MeV] the proposed detection scheme
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40K geoneutrino detection via charged-
current reactions and positron identification

AT XLV > physis > ancv:2308 04154 Hep |advneed!  Coy|d g single positron signal be

Physics > Geophysics used for 49K geoneutrino detection?
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Probing Earth's Missing Potassium using the Unique Antimatter Signature of Wh_at poss@le nuclear targets?
Geoneutrinos Which one is best?
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LiquidO — “Opaque” Liquid Scintillator

see talk on LiquidO by
Cloé Girard-Carillo later today

2 MeV events simulated

True Hits

short light scattering length stochastically confines scintillation photons
energy deposition pattern can be imaged by collecting light with grid of

wavelength-shifting fibres
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Imaging and Positron ID

see talk on LiquidO by
Cloé Girard-Carillo later today

2 MeV events simulated

True Hits

short light scattering length stochastically confines scintillation photons
energy deposition pattern can be imaged by collecting light with grid of

wavelength-shifting fibres

LiquidO’s relaxed transparency condition facilitates high doping
(of CC nuclear target) 8 /14



Best Nuclear Targets
Cross Section Weighted by Isotopic Abundance

35Cl and ©3Cu are the best, followed by 196Cd

40 i .
S endpoint. 75.76%, 69.15% and 1.25% natural abundance, respectively

7, +33C1 > 3°S + et — 1.189 MeV

7, + SCu - SNi* + et —1.176 MeV

53Ni* decays with 87 keV gamma ray
1.67 ps lifetime —

Both the LiquidO positron identification and
the delayed coincidence would strongly
suppress backgrounds!
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Potassium Geoneutrino
Event in LiquidO

a) positron event imaging
b) energy-time flow confirms 2y’s

c) orthopositronium formation
provides another e* tag

d) delayed 87 keV y from ®3Ni* decay

e) IBD (on proton) event from U, Th,
reactor v,’s can be distinguished




Positron Backgrounds
(and how to deal with them)

e Backgrounds

IBD(*X) of U and Th ~1/5 rate of predicted “°K geoneutrinos in K Irreducible but measured by
geoneutrinos energy interval IBD(p)
IBD(*X) of reactor ~1/60 rate of predicted *°K geoneutrinos in Irreducible but measured by
antineutrinos K energy interval IBD(p)
B* qeca}‘%rs qf naturally ~10°5 ¢" per year per ton Use of decay energ.y spectrum to
occurring *’K in the detector constrain

" decays of cosmogenic Similar to B* isotope production in current Cosmic muon veto and energy
1sotopes experiments spectrum for further suppression

Pair production cross section in the [1.022; Gamma rays make other
Pair production (e*-e") by 1.144] MeV range is ~10~ times the interactions prior to converting;

gamma rays (conversion) Compton scattering cross section that LiquidO event pattern helps
dominates in current experiments reject
e" signal is still very distinctive compared | Monte Carlo study of rejection of
to gamma-ray-induced single electron gamma rays using event pattern
recoils and energy flow

Multiple Compton scattering
(fake e" signal)
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Positron Backgrounds
(and how to deal with them)

e Backgrounds

IBD(*X) of U and Th ~1/5 rate of predicted “°K geoneutrinos in K Irreducible but measured b
energy interval IB

geoneutrinos
~1/60 rate of predicted “°K geoneutrinos in le but measured by

IBD(*X) of reactor
antineutrinos K energy interval IBD(p)

B decays of naturally Use of decay energy spectrum to
Y S car per ton
occurring *’K in the detector constrain

B* decays of cosmogenic _|S#ffilar to p* isotope production in current Cosmic muon veto and energy
1sotopes experiments spectrum for further suppression
Pair production cross section in the [1.022; Gamma rays make other
1.144] MeV range is ~10~ times the interactions prior to converting;
Compton scattering cross section that LiquidO event pattern helps

dominates in current experiments reject

Pair production (e*-e") by

gamma rays (conversion)

e" signal is still very distinctive compared | Monte Carlo study of rejection of

to gamma-ray-induced single electron gamma rays using event pattern
recoils and energy flow

Multiple Compton scattering
(fake e" signal)

In our paper, we found that
a cosmogenic background,
36C| production, rules out the
possibility to use 3°Cl as

the target.

We emphasize the
importance of fully studying
cosmogenic backgrounds in
rare event experiments.
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Signal at LNGS [TNU]

40K geo

What’s the Event Rate? e

U+Th IBD(Cu)

* 1 event/yr/100 kton of Cu SVT:QJCVL::E(CU)

ves, | know... proton decay searches are at this scale too kd

Including backgrounds (that are expected to be very low) and their
uncertainties, the discovery significance versus detector size is:
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Conclusions

* Potassium geoneutrino detection is hard!

* Exploiting the antimatter signature (e* identification like in LiquidO)
provides a handle for suppressing backgrounds for this rarest of

neutrino signals

 53Cu is the ideal and only feasible CC nuclear target, out of all that
have been studied, and provides a delayed coincidence signal
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