Atmospheric neutrino oscillation sensitivities with the IceCube Upgrade

Jan Weldert for the IceCube collaboration TAUP 2023

ICRC arxiv PoS

The IceCube Upgrade

The Upgrade

7 new strings hosting new optical sensors

5-10 times denser spacing

detect more light at low energies

Atmospheric neutrinos and oscillations

Atmospheric v

Cosmic ray interactions in Earth's atmosphere

$$\begin{split} p + N &\to \pi^{\pm}/K^{\pm} + X \\ \pi^{\pm}/K^{\pm} &\to \mu^{\pm} + \overleftarrow{v_{\mu}} \\ \mu^{\pm} &\to e^{\pm} + \overleftarrow{v_{\mu}} + \overleftarrow{v_{e}} \end{split}$$

Oscillation probability

$$P(\nu_{\mu} \to \nu_{\tau}) \approx \sin^2(2\theta_{\text{mix}}) \sin^2(\Delta m^2 \cdot \frac{L}{F})$$

- ⇒ Most important neutrino parameters
 - \circ $E^{\text{deposited}}$: proxy for neutrino energy E
 - cos(zenith): proxy for traveled distance L
 - PID: what neutrino flavor did we measure?

Oscillograms

Oscillation probability based on true neutrino parameter values

(will be smeared by reconstruction)

Energy threshold of detector due to limited number of detected photons

Upgrade (IC93)

- gives access to more of the interesting region
- detects more neutrinos (at all energies)

Event selection

Background sources

- Atmospheric μ
- PMT noise

Dominate in our detector

⇒ Need event selection to suppress them

(PMT) noise cleaning by neural network (GNN)

Removes ~95% of noise hits while keeping
 ~90% of signal hits

After event selection sample is neutrino dominated

Reconstruction & Classification

Neural network (GNN) based
We use a separate GNN for each variable

PID

Classifier achieves 0.82 area under the ROC curve giving significant improvement over IC86

Energy

Similar performance through entire range, bias at lower energies from event selection (and triggering)

Zenith angle

Similar performance through entire range, bias from limited range of possible values [-1,1]

-1.00 -0.75 -0.50 -0.25 0.00

0.25

True cos(zenith)

-1.00

Analysis details

Sensitivities are **Asimov** using a χ^2 metric

Binning

	IC86	IC93
Energy	Log(5,300,12) GeV	Log(3,300,12) GeV
Cos(zen)	Lin(-1,0,10)	Lin(-1,0,10)

On the following slides we compare two scenarios

- 1. no new strings \rightarrow 15 yr of IC86
- 2. new strings \rightarrow 12 yr of IC86 + 3 yr of IC93

Systematic parameters

Flux

Spectral index

Uncertainty on Pion and Kaon production

Neutrino and Muon Normalizations

Cross sections

Deep inelastic scattering uncertainty

Axial masses for Resonant CC and Quasi-elastic scattering

Axial masses for Resonant NC and Coherent π scattering

Model uncertainty on tau neutrino cross section

Detector

Bulk ice properties scattering and absorption

Optical module efficiencies

Angular acceptance (IC86 configuration only)

Atmospheric oscillation parameters

How well can we constrain the atmospheric oscillation parameters Δm_{31}^2 and θ_{23} ?

90% confidence level after 3 years with the new strings assuming NuFit 5.2

With the new strings IceCube's sensitivity to Δm_{31}^2 and θ_{23} increases by about 20-30%

$\nu_{ au}$ normalization

How well can we constrain the number (scale) of detected v_{τ} ?

Can be a unitarity test of the PMNS matrix or a test of the v_{τ} cross-section

With new strings 1σ uncertainty can be almost reduced by a factor of two

Current results

Neutrino mass ordering

Ordering of the three mass eigenstates

θ_{23} dependence

NMO sensitivity strongly depends on true value of θ_{23}

The current NuFit (5.2) value is not very favorable for us

Livetime evolution

New strings significantly enhance NMO sensitivity

- \triangleright Will reach more than 2σ within a few years
- \triangleright More than 3σ possible

Summary

The IceCube Upgrade

7 additional strings (IC86 \rightarrow IC93) improving the performance at GeV energies

First end to end, full Monte Carlo based projected sensitivities presented

The Upgrade will improve the sensitivity to all tested atmospheric neutrino oscillation analyses

- o Oscillation parameters: 20-30% improvement
- \circ ν_{τ} normalization: around 40% improvement
- Neutrino mass ordering: almost 4× boost in sensitivity

Outlook

These are preliminary sensitivities, improvements are expected due to

- additional deployed calibration devices
- further optimizing triggers and event selection
- optimized analysis choices

For the NMO a huge boost in sensitivity can be achieved by combining IC93 with the medium baseline experiment JUNO

 $ightharpoonup 5\sigma$ within a few years of joint operation realistic

Thank you for your attention

Neutrino detection

Event sample – analysis level

Final level parameter distribution for the most important analysis variables

Free parameters

Description	Parameter(s)	Atm. osc.	v_{τ}	NMO
Flux				
Spectral index	γ	x	X	X
	d_{π}	=	-	X
Uncertainty on Pion and Kaon production (Barr et al. [16])	$g_{\pi}, h_{\pi}, i_{\pi}, w_K, z_K$	x	X	X
	УK	x	X	2.50
Neutrino and Muon Normalizations	A_{eff}, μ_{atm}	x	X	X
Cross sections				
Deep inelastic scattering uncertainty [17]	DIS _{CSMS}	x	X	:=:
Axial masses for Resonant CC and Quasi-elastic scattering	$M_{A,res}^{CC}, M_{A,QE}$	x	X	X
Axial masses for Resonant NC and Coherent π scattering	$M_{A,res}^{CC}, M_{A,QE}$ $M_{A,res}^{NC}, M_{A,coh}$	823	_	X
Model uncertainty on tau neutrino cross section [18]	v_{τ} xsec	=	-	X
Detector				
Bulk ice properties scattering and absorption	scat., abs.	x	X	X
Optical module efficiencies (IceCube and Upgrade modules)	OM _{eff,ICDC} , OM _{eff,ICU}	x	X	X
Angular acceptance (IC86 configuration only)	p_0, p_1	x	X	X
Oscillations				
Mixing Angles	θ_{13}	1=	-	X
Wixing Angles	θ_{23}	M	X	X
Mass splitting	Δm_{31}^2	M	X	X
Unitarity breaking parameter	v_{τ} norm	*	M	3 <u>-2</u>
Neutrino Mass Ordering	NMO	NO	NO	M

Atmospheric oscillation parameters

Comparison to current sensitivities

1D projections

$\nu_{ au}$ normalization

Sensitivity 3 years after planned deployment

Neutrino mass ordering (NMO)

Ordering of the neutrino mass eigenstates

v-oscillation (vacuum, leading-term)

$$P_{\nu_{\alpha} \to \nu_{\alpha}} = 1 - \sin^2(2\theta) \sin^2(\Delta m^2 \frac{L}{E})$$

$$\Rightarrow P \propto \sin^2(x) = \sin^2(|x|)$$

(vacuum) oscillations not sensitive to sign of Δm^2

Use matter effects (seen on slide 5) to distinguish orderings

normal ordering (NO) inverted ordering (IO)

NMO sensitivities for true inverted ordering

NMO sensitivities with JUNO for true inverted ordering

