Atmospheric neutrino oscillation sensitivities with the IceCube Upgrade Jan Weldert for the IceCube collaboration TAUP 2023 **ICRC** arxiv PoS ## The IceCube Upgrade #### **The Upgrade** 7 new strings hosting new optical sensors 5-10 times denser spacing detect more light at low energies ## **Atmospheric neutrinos and oscillations** #### Atmospheric v Cosmic ray interactions in Earth's atmosphere $$\begin{split} p + N &\to \pi^{\pm}/K^{\pm} + X \\ \pi^{\pm}/K^{\pm} &\to \mu^{\pm} + \overleftarrow{v_{\mu}} \\ \mu^{\pm} &\to e^{\pm} + \overleftarrow{v_{\mu}} + \overleftarrow{v_{e}} \end{split}$$ #### **Oscillation probability** $$P(\nu_{\mu} \to \nu_{\tau}) \approx \sin^2(2\theta_{\text{mix}}) \sin^2(\Delta m^2 \cdot \frac{L}{F})$$ - ⇒ Most important neutrino parameters - \circ $E^{\text{deposited}}$: proxy for neutrino energy E - cos(zenith): proxy for traveled distance L - PID: what neutrino flavor did we measure? ## **Oscillograms** Oscillation probability based on true neutrino parameter values (will be smeared by reconstruction) Energy threshold of detector due to limited number of detected photons Upgrade (IC93) - gives access to more of the interesting region - detects more neutrinos (at all energies) #### **Event selection** #### **Background sources** - Atmospheric μ - PMT noise Dominate in our detector ⇒ Need event selection to suppress them (PMT) noise cleaning by neural network (GNN) Removes ~95% of noise hits while keeping ~90% of signal hits After event selection sample is neutrino dominated ### **Reconstruction & Classification** Neural network (GNN) based We use a separate GNN for each variable #### PID Classifier achieves 0.82 area under the ROC curve giving significant improvement over IC86 #### **Energy** Similar performance through entire range, bias at lower energies from event selection (and triggering) #### Zenith angle Similar performance through entire range, bias from limited range of possible values [-1,1] -1.00 -0.75 -0.50 -0.25 0.00 0.25 True cos(zenith) -1.00 ## **Analysis details** Sensitivities are **Asimov** using a χ^2 metric #### **Binning** | | IC86 | IC93 | |----------|-------------------|-------------------| | Energy | Log(5,300,12) GeV | Log(3,300,12) GeV | | Cos(zen) | Lin(-1,0,10) | Lin(-1,0,10) | On the following slides we compare two scenarios - 1. no new strings \rightarrow 15 yr of IC86 - 2. new strings \rightarrow 12 yr of IC86 + 3 yr of IC93 #### **Systematic parameters** #### Flux Spectral index Uncertainty on Pion and Kaon production Neutrino and Muon Normalizations #### Cross sections Deep inelastic scattering uncertainty Axial masses for Resonant CC and Quasi-elastic scattering Axial masses for Resonant NC and Coherent π scattering Model uncertainty on tau neutrino cross section #### Detector Bulk ice properties scattering and absorption Optical module efficiencies Angular acceptance (IC86 configuration only) ## **Atmospheric oscillation parameters** How well can we constrain the atmospheric oscillation parameters Δm_{31}^2 and θ_{23} ? 90% confidence level after 3 years with the new strings assuming NuFit 5.2 With the new strings IceCube's sensitivity to Δm_{31}^2 and θ_{23} increases by about 20-30% ## $\nu_{ au}$ normalization How well can we constrain the number (scale) of detected v_{τ} ? Can be a unitarity test of the PMNS matrix or a test of the v_{τ} cross-section With new strings 1σ uncertainty can be almost reduced by a factor of two Current results ## **Neutrino mass ordering** Ordering of the three mass eigenstates #### θ_{23} dependence NMO sensitivity strongly depends on true value of θ_{23} The current NuFit (5.2) value is not very favorable for us #### Livetime evolution New strings significantly enhance NMO sensitivity - \triangleright Will reach more than 2σ within a few years - \triangleright More than 3σ possible ## **Summary** #### The IceCube Upgrade 7 additional strings (IC86 \rightarrow IC93) improving the performance at GeV energies First end to end, full Monte Carlo based projected sensitivities presented The Upgrade will improve the sensitivity to all tested atmospheric neutrino oscillation analyses - o Oscillation parameters: 20-30% improvement - \circ ν_{τ} normalization: around 40% improvement - Neutrino mass ordering: almost 4× boost in sensitivity #### Outlook These are preliminary sensitivities, improvements are expected due to - additional deployed calibration devices - further optimizing triggers and event selection - optimized analysis choices For the NMO a huge boost in sensitivity can be achieved by combining IC93 with the medium baseline experiment JUNO $ightharpoonup 5\sigma$ within a few years of joint operation realistic # Thank you for your attention #### **Neutrino detection** ## **Event sample – analysis level** Final level parameter distribution for the most important analysis variables ## **Free parameters** | Description | Parameter(s) | Atm. osc. | v_{τ} | NMO | |--|--|-----------|------------|-------------| | Flux | | | | | | Spectral index | γ | x | X | X | | | d_{π} | = | - | X | | Uncertainty on Pion and Kaon production (Barr et al. [16]) | $g_{\pi}, h_{\pi}, i_{\pi}, w_K, z_K$ | x | X | X | | | УK | x | X | 2.50 | | Neutrino and Muon Normalizations | A_{eff}, μ_{atm} | x | X | X | | Cross sections | | | | | | Deep inelastic scattering uncertainty [17] | DIS _{CSMS} | x | X | :=: | | Axial masses for Resonant CC and Quasi-elastic scattering | $M_{A,res}^{CC}, M_{A,QE}$ | x | X | X | | Axial masses for Resonant NC and Coherent π scattering | $M_{A,res}^{CC}, M_{A,QE}$ $M_{A,res}^{NC}, M_{A,coh}$ | 823 | _ | X | | Model uncertainty on tau neutrino cross section [18] | v_{τ} xsec | = | - | X | | Detector | | | | | | Bulk ice properties scattering and absorption | scat., abs. | x | X | X | | Optical module efficiencies (IceCube and Upgrade modules) | OM _{eff,ICDC} , OM _{eff,ICU} | x | X | X | | Angular acceptance (IC86 configuration only) | p_0, p_1 | x | X | X | | Oscillations | | | | | | Mixing Angles | θ_{13} | 1= | - | X | | Wixing Angles | θ_{23} | M | X | X | | Mass splitting | Δm_{31}^2 | M | X | X | | Unitarity breaking parameter | v_{τ} norm | * | M | 3 <u>-2</u> | | Neutrino Mass Ordering | NMO | NO | NO | M | ## **Atmospheric oscillation parameters** Comparison to current sensitivities 1D projections ## $\nu_{ au}$ normalization Sensitivity 3 years after planned deployment ## **Neutrino mass ordering (NMO)** Ordering of the neutrino mass eigenstates v-oscillation (vacuum, leading-term) $$P_{\nu_{\alpha} \to \nu_{\alpha}} = 1 - \sin^2(2\theta) \sin^2(\Delta m^2 \frac{L}{E})$$ $$\Rightarrow P \propto \sin^2(x) = \sin^2(|x|)$$ (vacuum) oscillations not sensitive to sign of Δm^2 Use matter effects (seen on slide 5) to distinguish orderings #### normal ordering (NO) inverted ordering (IO) ## NMO sensitivities for true inverted ordering ## NMO sensitivities with JUNO for true inverted ordering