Detector calibration in the sub-MeV range in JUNO

Akira Takenaka on behalf of the JUNO collaboration, akira.takenaka@sjtu.edu.cn
Tsung-Dao Lee Institute, Shanghai Jiao Tong University, TAUP2023 at University of Vienna

Abstract

Newly developed intelligent event trigger system will enable to lower the JUNO energy threshold down to \(O(10)\) keV, and new calibration sources (such as \(^{226}\text{Ra}\) (186 keV \(\gamma\)-ray), \(^{241}\text{Am}\) (59.5 keV \(\gamma\)-ray)) are planned to be deployed to calibrate this low-energy region. The uncertainty in the energy scale calibration due to the source apparatus geometry and \(^14\text{C}\) contamination effects has been estimated to be less than 1% level, and this poster also presents the status of the radioactive source (\(^{226}\text{Ra}\) preparation).

Calibration in the sub-MeV Range

- New dedicated calibration sources:
 - \(^{241}\text{Am}\): After the \(\alpha\)-decay, 59.5 keV \(\gamma\)-ray is emitted.
 - \(^{241}\text{Am}\) is available from existing \(^{241}\text{Am}^{13}\text{C}\) neutron source.
 - \(^{226}\text{Ra}\): After the \(\alpha\)-decay, 186 keV \(\gamma\)-ray is emitted.
 - Daughter isotopes from \(^{226}\text{Ra}\), such as \(^{214}\text{Pb}\) (352, 295, 242, 53.2 keV), \(^{210}\text{Pb}\) (46.5 keV), also provide low-energy \(\gamma\)-rays.
 - \(^{226}\text{Ra}\) source has been newly produced.
 - Calibration feasibility has been studied using the JUNO simulation.

Estimated Uncertainty in Energy Scale Calibration

- Uncertainties due to the optical shadowing and energy losses in the source apparatus geometry, contaminations of \(^{14}\text{C}\) (\(\beta\)-decay, \(Q\) value \(~160\) keV, exp. rate \(~40\) kHz, \(10^{-17}\) g/g in LS) have been estimated to be less than 1%.
- \(^{14}\text{C}\) backgrounds are reduced by strict vertex position cut and subtracted by “source-off (\(^{14}\text{C}\) only)” samples.