Atmospheric Tau Neutrino Interaction and its Identification at JUNO Experiment Zhenning Qu^{1,2} on behalf of the JUNO collaboration 1. Institute of High Energy Physics, Chinese Academy of Science 2. University of Chinese Academy of Science # I. Introduction The Jiangmen Underground Neutrino Observatory (JUNO): a multipurpose neutrino observatory with the largest ever liquid scintillator (LS) detector [1]: - Main goal: determine neutrino mass ordering - Large target: 20 kton LS - High photo-coverage: 78% **Motivation:** 1. No $\geq 5\sigma$ results of atmospheric tau neutrino appearance from oscillations; 2. JUNO will be the first LS detector with the capability to measure it; 3. Constrain the Standard Model predictions Oscillation probability and flux: use Prob3++ [2] with NO oscillation parameters [3]. Atmospheric ν_e/ν_μ flux is the **Honda flux** at JUNO site [4]. # II. Neutrino interaction simulation ν_{τ} Event Rate - **GENIE v3.02.00** [5] - Targets: 88% ¹²C, 12% ¹H - $\bullet E_{\nu}$: only analysis 0-20 GeV now - Model: G18_10b_02_11b [6] - Signal: charged current (CC) ν_{τ} - Background: CC $\nu_e + \nu_\mu$, neutral current (NC) of all flavors | Interaction | RES + DIS | Average number | |----------------------------------|-----------|-------------------------| | mode | ratio | of produced π^{\pm} | | $\overline{\text{CC }\nu_{ au}}$ | 66.8% | 0.895 | | $CC \nu_{atmo}$ | 44.8% | 0.484 | | $NC \nu_{atmo}$ | 37.9% | 0.308 | | | | | • Large lepton τ mass \rightarrow high energy threshold ~ 2.5 GeV (consider 12 C 2p2h effect) \overline{v}_{τ} Event Rate • More high energy events \rightarrow higher RES/DIS ratio \rightarrow more hadrons (e.g. pion) The high oscillation probability from ν_{μ} to ν_{τ} and the high energy threshold of CC ν_{τ} also mean suppression of low energy upward-going atmospheric neutrino event number. # III. Detector simulation In this poster, the study is based on detector truth information from the detector simulation in the JUNO official simulation framework. #### Selection: - Fully contained (FC): no hits from water pool PMTs - Quenched deposit energy (QE_{dep}): $0.1 \sim 20 \text{ GeV}$ Different energy spectrum expected for signal and background + JUNO fine energy resolution \rightarrow good potential to distinguishing ν_{τ} events from primary atmospheric neutrinos. ### IV. Identification - 1. **Tau decay:** τ (mean life $2.9 \times 10^{-13} s$) cannot be directly detected in JUNO. Instead, the decayed particles can help us to distinguish τ . Two decay modes of τ : - Leptonic decay: $\tau \to e\nu\nu/\mu\nu\nu$ (Br = 35.21%), similar to the atmospheric CC ν_e/ν_μ . - Hadronic decay: $\tau \to \geq 1h\nu$, h stands for π (or K). (1) Different deposit energy for mesons and leptons \to different distances from the deposit energy center to the primary vertex; (2) More Michel electrons from these charged meson decays; (3) Charged mesons are more likely to undergo inelastic scattering with nuclei in LS and produce more neutrons than leptons. 2. Neutrino direction: the oscillation length in excess of the tau threshold is at least $4{,}100 \text{ km} \rightarrow \text{most } \nu_{\tau}$ are upward-going. 3. Spatial distributions of PMT's waveform features (total **PE, first hit time (FHT), peak time, max nPE)**. The statistical features of these 2-dimensional distributions contain both waveform shape and spatial information. - Method: boosted decision trees (BDT) method in the ROOT-based TMVA [7] library - Input: neutrino direction, distance, neutron multiplicity, and Michel electron multiplicity + PMT features (excluded high correlation ones) - Samples: training and testing samples with energy spectrum weighted to a flat one, unweighted analysis sample - Cutting on BDT output shows better efficiencies of signal selection and background rejection than just using neutrino direction. - \bullet Preferred a 2D unbinned maximum likelihood fit with probability distribution functions (PDFs) of the BDT output and the $QE_{\rm dep}$. # V. Summary and outlook - Tau neutrinos can be separated from atmospheric neutrinos background thanks to: - * different energy spectrum and neutrino direction distribution - * special lepton tau decay topology - * different PMT waveform shape and spatial distribution of hits - A BDT method is processed and a good efficiency can be expected while the detector response and systematic errors should be further studied. - The reconstruction of atmospheric neutrino is ongoing (see Poster 376 by Xinhai He). ## References - ¹F. An and et. al, Journal of Physics G: Nuclear and Particle Physics **43**, 030401 (2016). - $^2Prob3++$, https://webhome.phy.duke.edu/~raw22/public/Prob3++/. - ³I. Esteban and et. al., Journal of High Energy Physics **2019**, 106 (2019). - ⁴M. Honda and et. al., Phys. Rev. D **92**, 023004 (2015). - ⁵C. Andreopoulos and et. al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment **614**, 87–104 (2010). - ⁶J. Tena-Vidal and et. al. (GENIE Collaboration), Phys. Rev. D **104**, 072009 (2021). - ⁷A. Hoecker and et. al., PoS **ACAT**, 040 (2009).