

Atmospheric Tau Neutrino Interaction and its Identification at JUNO Experiment

Zhenning Qu^{1,2} on behalf of the JUNO collaboration

1. Institute of High Energy Physics, Chinese Academy of Science 2. University of Chinese Academy of Science

I. Introduction

The Jiangmen Underground Neutrino Observatory (JUNO): a multipurpose neutrino observatory with the largest ever liquid scintillator (LS) detector [1]:

- Main goal: determine neutrino mass ordering
- Large target: 20 kton LS
- High photo-coverage: 78%

Motivation: 1. No $\geq 5\sigma$ results of atmospheric tau neutrino appearance from oscillations; 2. JUNO will be the first LS detector with the capability to measure it; 3. Constrain the Standard Model predictions

Oscillation probability and flux: use Prob3++ [2] with NO oscillation parameters [3]. Atmospheric ν_e/ν_μ flux is the **Honda flux** at JUNO site [4].

II. Neutrino interaction simulation

 ν_{τ} Event Rate

- **GENIE v3.02.00** [5]
- Targets: 88% ¹²C, 12% ¹H
- $\bullet E_{\nu}$: only analysis 0-20 GeV now
- Model: G18_10b_02_11b [6]
- Signal: charged current (CC) ν_{τ}
- Background: CC $\nu_e + \nu_\mu$, neutral current (NC) of all flavors

Interaction	RES + DIS	Average number
mode	ratio	of produced π^{\pm}
$\overline{\text{CC }\nu_{ au}}$	66.8%	0.895
$CC \nu_{atmo}$	44.8%	0.484
$NC \nu_{atmo}$	37.9%	0.308

• Large lepton τ mass \rightarrow high energy threshold ~ 2.5 GeV (consider 12 C 2p2h effect)

 \overline{v}_{τ} Event Rate

• More high energy events \rightarrow higher RES/DIS ratio \rightarrow more hadrons (e.g. pion)

The high oscillation probability from ν_{μ} to ν_{τ} and the high energy threshold of CC ν_{τ} also mean suppression of low energy upward-going atmospheric neutrino event number.

III. Detector simulation

In this poster, the study is based on detector truth information from the detector simulation in the JUNO official simulation framework.

Selection:

- Fully contained (FC): no hits from water pool PMTs
- Quenched deposit energy (QE_{dep}): $0.1 \sim 20 \text{ GeV}$

Different energy spectrum expected for signal and background + JUNO fine energy resolution \rightarrow good potential to distinguishing ν_{τ} events from primary atmospheric neutrinos.

IV. Identification

- 1. **Tau decay:** τ (mean life $2.9 \times 10^{-13} s$) cannot be directly detected in JUNO. Instead, the decayed particles can help us to distinguish τ . Two decay modes of τ :
- Leptonic decay: $\tau \to e\nu\nu/\mu\nu\nu$ (Br = 35.21%), similar to the atmospheric CC ν_e/ν_μ .
- Hadronic decay: $\tau \to \geq 1h\nu$, h stands for π (or K). (1) Different deposit energy for mesons and leptons \to different distances from the deposit energy center to the primary vertex; (2) More Michel electrons from these charged meson decays; (3) Charged mesons are more likely to undergo inelastic scattering with nuclei in LS and produce more neutrons than leptons.

2. Neutrino direction: the oscillation length in excess of the tau threshold is at least $4{,}100 \text{ km} \rightarrow \text{most } \nu_{\tau}$ are upward-going.

3. Spatial distributions of PMT's waveform features (total **PE, first hit time (FHT), peak time, max nPE)**. The statistical features of these 2-dimensional distributions contain both waveform shape and spatial information.

- Method: boosted decision trees (BDT) method in the ROOT-based TMVA [7] library
- Input: neutrino direction, distance, neutron multiplicity, and Michel electron multiplicity + PMT features (excluded high correlation ones)
- Samples: training and testing samples with energy spectrum weighted to a flat one, unweighted analysis sample

- Cutting on BDT output shows better efficiencies of signal selection and background rejection than just using neutrino direction.
- \bullet Preferred a 2D unbinned maximum likelihood fit with probability distribution functions (PDFs) of the BDT output and the $QE_{\rm dep}$.

V. Summary and outlook

- Tau neutrinos can be separated from atmospheric neutrinos background thanks to:
- * different energy spectrum and neutrino direction distribution
- * special lepton tau decay topology
- * different PMT waveform shape and spatial distribution of hits
- A BDT method is processed and a good efficiency can be expected while the detector response and systematic errors should be further studied.
- The reconstruction of atmospheric neutrino is ongoing (see Poster 376 by Xinhai He).

References

- ¹F. An and et. al, Journal of Physics G: Nuclear and Particle Physics **43**, 030401 (2016).
- $^2Prob3++$, https://webhome.phy.duke.edu/~raw22/public/Prob3++/.
- ³I. Esteban and et. al., Journal of High Energy Physics **2019**, 106 (2019).
- ⁴M. Honda and et. al., Phys. Rev. D **92**, 023004 (2015).
- ⁵C. Andreopoulos and et. al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment **614**, 87–104 (2010).
- ⁶J. Tena-Vidal and et. al. (GENIE Collaboration), Phys. Rev. D **104**, 072009 (2021).
- ⁷A. Hoecker and et. al., PoS **ACAT**, 040 (2009).