First Energy Calibration of SuperNEMO's Calorimeter using its Tracko-Calo Technology

Aguerre Xalbat, Koňařík Filip, Patrick Cheryl, Křižák Tomáš, on behalf of the SuperNEMO collaboration

SuperNEMO - a full topological design to understand double-beta decay

SuperNEMO specifications:

- → Background: < 10⁻⁴ events /(keV.kg.yr)
- \rightarrow Full kinematics of $\beta\beta$ decays:
 - * Discriminate ονββ mechanisms
 - * Study of 2νββ and decay to excited states
 - ◆ Constrain the quenching of g_∧

Calorimeter: 712 optical modules (OM)

- photomultiplier tubes and plastic scintillator

Tracker: wire chamber

- 2034 Geiger cells

ονββ source foil: 6.11 kg of ⁸²Se

Calibration system:

42 deployable point-like ²⁰⁷Bi sources

Particle Track Reconstruction

- Geiger cell:
 - → height of the passing particle
 - → distance r_i to the vertical anode wire
- circular tracker hits (x_i, y_i, r_i)
- reconstruction in horizontal plane is done using Legendre transform
- hits described in Legendre space by their tangent lines (Θ,R)
- intersection of Legendre images = reconstructed track

Electron Energy Loss Correction

- electrons lose energy while passing through tracker → influences calibration
- using tracker, electron's track length can be measured → **lost energy can** be estimated using suitable model

Energy loss model based on Landau distribution

probability of losing energy ΔE track length

Simulation

Scintillator Response **Non-uniformity**

The point where the electron hits an optical module can decrease **light collection** by up to 10%

As expected, better light collection on the centre than the side

Simulation completely compatible with data!

E[keV]

First Energy Calibration of SuperNEMO's Calorimeter using its Tracko-Calo Technology

Aguerre Xalbat, Koňařík Filip, Patrick Cheryl, Křižák Tomáš, on behalf of the SuperNEMO collaboration

SuperNEMO Demonstrator's search for 0vbb

Possible answer for various questions:

- → Neutrino = antineutrino?
- → Neutrino mass = ?
- → Lepton number violation?
- → Leptogenesis?

SuperNEMO specifications:

- → Background: < 10⁻⁴ events /(keV.kg.yr)
- \rightarrow Full kinematics of $\beta\beta$ decays:
 - * Discriminate ονββ mechanisms
 - * Study of 2νββ and decay to excited states
 - ◆ Constrain the quenching of g_A

Particle track reconstruction

- each Geiger cell measures height of the passing particle and the distance to the anode wire → circular tracker hits
- no external magnetic field → trajectory is
 a straight line tangent to the hits
- reconstruction in horizontal plane is done using **Legendre transform**
- hits described in Legendre space by their tangent lines
- intersection of Legendre images = reconstructed track

e energy loss correction

- electrons lose energy while passing through tracker → influences calibration
- using tracker, electron's track length can be measured → lost energy can be estimated using suitable model

Energy loss model based on Landau distribution

Scintillator response non-uniformity

- Different photomultiplier **light collection** in function of the **impact point of the e** on the scintillator:
 - o e in the **centre** of the scintillator
 - → relatively **more light**
 - o e in the **corner** of the scintillator
 - → relatively **less light**

Prediction with Geant4 optical simulation

→ Maximal difference of ~10% on the light collection

First study of the non uniformity on SuperNEMO's final configuration

Data selected into two areas with respect to the scintillator face:

- **Centre**: < 10 cm from the centre
- **Side**: > 20 cm from the centre

As expected, better light collection on the centre than the side

Simulation **completely compatible** with data!

More detailed study to come!

E[keV]

SuperNEMO Demonstrator's Search for Neutrinoless Double Beta Decay (0vbb)

SuperNEMO specifications:

- → Background: < 10⁻⁴ events /(keV.kg.yr)
- \rightarrow Full kinematics of $\beta\beta$ decays:
 - Discriminate ονββ mechanisms
 - * Study of 2νββ and decay to excited states
 - Constrain the **quenching of g**_A

Calorimeter: 712 optical modules (OM)
- photomultiplier tubes

and plastic scintillator **Tracker:** wire chamber

- 2034 Geiger cells

ββον source foil: 6.11 kg of ⁸²Se

Calibration system:

42 deployable point-like ²⁰⁷Bi sources

