

Radon contamination measurement in the SuperNEMO demonstrator

Yegor Vereshchaka, Mathis Granjon, Laurent Simard IJCLab— Orsay — France & LP2I — Bordeaux — France On behalf of the SuperNEMO Collaboration

 $(A,Z) \rightarrow (A,Z+2) + 2e + 2v$

 $0\nu\beta\beta$ is always accompanied by $2\nu\beta\beta$.

Search for 0vββ

Nature of the neutrino

- Fundamental neutral fermion with spin ½, was long thought to be massless, but it is massive.
- Neutrino undergoes weak interaction only.
- 3 neutrino flavours exist (v_e, v_{μ}, v_{τ}) .
- Neutrino flavours can oscillate.

- **Dirac neutrino:** different from its antiparticle or **Majorana neutrino:** equal to its own antiparticle.
- How to prove the Majorana nature of neutrino?

Search for neutrinoless double-beta decay!

Neutrinoless double-beta decay $(0v\beta\beta)$

Q value ~ 3 MeV

SuperNEMO demonstrator

Tracko-calo principle of particle detection

• Tracker: 2034 Geiger cells

• Source foil: 6.11 kg of 82Se

Calorimeter: 712 OMs (Scintillator + PMT)

Specificity of SuperNEMO:

- signature of two electrons topology
- high background rejection
- study of 0νββ mechanism
- search for exotic physics & understanding nuclear structure with $2\nu\beta\beta$

Demonstrator installed and running

- installation in Modane underground laboratory (LSM)
- calorimeter + tracker fully operational since Dec. 2022
- remaining part to be installed: gamma & neutron shieldings

Less than 1.4% of Geiger cells are currently off.

Crossing electron event

Background suppression strategies:

- use of radiopure materials
- antiradon tent
- iron (gamma) shielding water + polyethylene (neutron) shielding

²²²Rn background

Background sources for $0\nu\beta\beta$

Gaseous isotope with $T\frac{1}{2}$ = 3.8 days, can **emanate** from materials or **diffuse** through them.

Isotopes contributing to the background for $0\nu\beta\beta$

Sources of ²²²Rn:

- emanation from the rock of the lab & diffusion towards the detector
- emanation from the detector materials
- contamination of the entrance gas of the tracker

Future plans to reduce contamination:

install antiradon tent & flush radon-free

- air inside
- increase the gas flux use the radon trap

Preliminary measurement of the ²²²Rn background ²¹⁴Bi - ²¹⁴Po cascades

Selection of ²¹⁴Bi - ²¹⁴Po candidates:

1 alpha candidate (2-6 cell hits) with a **common vertex** as an electron-like track in the previous event: distance between vertices: horizontal < 10 cm & vertical < 15 cm; 200 μ s < $\Delta t(\alpha - e^-)$ < 1000 μ s

Preliminary estimated ²²²Rn activity inside SuperNEMO demonstrator: (6 ± 2) mBq/m³, like in NEMO-3 **SuperNEMO goal** after future improvements: < 0.15 mBq/m³