Scintillating active transverse energy filter (aTEF)

Karlsruhe Institute of Technology

A. Huber¹, G. Drexlin^{1,2}, M. Steidl¹, D. Hinz¹ for the KATRIN Collaboration

- ¹ Institute for Astroparticle Physics (IAP), Karlsruhe Institute of Technology (KIT)
- ² Institute of Experimental Particle Physics (ETP), Karlsruhe Institute of Technology (KIT)
- ³ Institute for Nuclear Physics, Westfälische Wilhelms-Universität Münster

Motivation

KATRIN Goal:

- determination of the neutrino-mass on sub-eV-scale

Rydberg Background:

- high n (principle quantum number)
- low initial energy E_n ∝ n^{-2} (eV-scale)

Angular Distribution at Detector:

- electrons are accelerated towards detector
- background has smaller angle than signal

Scint-aTEF principle

3x3 Cells Example:

1) Scintillator

- cell dimensions 250 μm x 300 μm
- wall thickness $25 \mu m$
- 2) non-scintillating blocking layers $(\sim 10 \, \mu m)$

IDP4 (efficiency) PPO+POPOP (emission) 0.8 0.6 a.u. 0.2 0.0 1000 800 1200 600 wavelength λ (nm)

Production via 3D-Printing:

- 2-photon-absorption lithography
- resolution up to the nanoscale
- multi-focus print (large arrays)

Single-Photon-Avalanche-Diode:

- fast, single photon read out
- spatial information of signal
- optimized quantum efficiency

Prototype Development

3D-printed Scintillator:

- based on aromatic methacrylates
- 2-stage wavelength shifting
- collaboration with Institute for Applied Physics @KIT (Prof. Wegener)
- challenges: e.g. solubility of POPOP

Characterization with PMT:

- 83mKr-Source with E_e in keV-range
- optimization of scintillator recipe
- check influence of e.g. surface quality and radiation damages

Single-Event-Resolution:

- read-out of single electron events
- SPAD + Scintillator + 83mKr-Source
- use topological information to reconstruct the event

We acknowledge the support of Helmholtz Association (HGF); Ministry for Education and Research BMBF (05A17PX3, 05A17VX2, 05A17PX3, 05A17VX3, 05A17 Helmholtz Young Investigator Group (VH-NG-1055); Max Planck Research Group (MaxPlanck@TUM); Deutsche Forschungsgemeinschaft DFG (Research Training Group grant nos. GRK 1694 and GRK 2149); Graduate School grant no. GSC 1085-KSETA and SFB-1258 in Germany; Ministry of Education, Youth and Sport (CANAM-LM2015056, LTT19005) in the Czech Republic; the Department of Energy through grants DE-FG02-97ER41020, DE-FG02-94ER40818, DE-SC0004036, DE-FG02-97ER41033, DE-FG02-97ER41041, DE-SC0011091 and DE-SC0019304; and the Federal Prime Agreement DE-AC02- 05CH11231 in the USA. This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation programme (grant agreement no. 852845).