

Detecting supernova neutrinos with RES-NOVA archaeological Pb cryogenic detectors

Simone Quitadamo (Gran Sasso Science Institute) on behalf of the RES-NOVA group of interest

TAUP2023: XVIII International Conference on Topics in Astroparticle and Underground Physics

> University of Vienna 30th August 2023

Simone Quitadamo - Detecting supernova neutrinos with RES-NOVA archaeological Pb cryogenic detectors

Supernova neutrinos

- Supernova (SN):
 - final stage of massive stars (heavier than $\sim 8 M_{\odot}$);
 - gravitational core collapse (CC) \rightarrow formation of neutron star (NS) / black hole (BH); \succ
 - neutrino burst: $\sim 10^{58}$ v emitted in ~ 10 s. \succ
- SN-*v* are direct probes of stellar core (not accessible through *y* detection), providing insights into:
 - mechanism of gravitational collapse;
 - NS degenerate matter; >
 - SN evolution and shockwave propagation; \succ
 - acceleration mechanism of ultra-high energy cosmic rays. \succ
- All ν /anti- ν flavours emitted (flavour equipartition often assumed).
- Current SN-v observatories mostly sensitive to $v_{a}/anti-v_{a}$ (~ $\frac{1}{3}$ of total ν flux) through inverse- β decay (IBD) need for a detection technique highly sensitive to all v flavors.

Coherent elastic neutrino-nucleus scattering

• Coherent elastic neutrino-nucleus scattering (CEvNS):

- \succ *v*-nucleus interaction via Z^0 exchange \rightarrow nucleus recoils as a whole;
- neutral-current weak process

equally sensitive to all *v*/anti-*v* flavours

no uncertainty due to *v*-flavour oscillations in the extreme stellar environment;

 \succ CEvNS cross-section (spin-0 interaction):

$$\frac{d\sigma}{dE_R} = \frac{G_F^2 m_N}{8\pi (\hbar c)^4} \left[(4\sin^2\theta_W - 1)Z + N \right]^2 \left(2 - \frac{E_R m_N}{E^2} \right) \cdot |F(q)|^2$$

- cross-section \propto (neutron number)² \rightarrow enhanced in heavy nuclei (Pb);
- **cross-section on Pb** \sim 10²⁻³ times higher w.r.t. IBD \rightarrow high statistics SN- ν detection.
- CEvNS has zero energy threshold.
- Experimental signature of CE ν NS: nuclear recoil (NR) \downarrow detectors with low-energy threshold (\sim 1 keV) required.

Low-temperature calorimeters

- Requirements for a SN-*v* detector based on CE*v*NS:
 - > Pb-based for high CEvNS cross-section;
 - \sim \sim 1 keV low-energy threshold.
- Requirements can be addressed by low-temperature calorimeters:
 - > operated at \sim 10 mK;
 - simplified model:
 - <u>energy absorber</u>: released energy is converted into phonons excitations \rightarrow temperature increase ΔT ;
 - <u>thermal sensor</u>: converts *ΔT* into an electric signal with amplitude proportional to the released energy;
 - <u>thermal link</u> to heat bath to restore initial temperature.
 - > low energy threshold (\sim 1 keV);
 - > time resolution (\sim 100 μ s);
 - feasibility of ton-scale experiments already demonstrated.

Detector concept

- RES-NOVA demonstrator:
 - newly proposed observatory for SN-v;
 - exploit CEvNS with low-temperature calorimeters;
 - > array of 54 $^{\text{arch}}$ PbWO₄ crystals:
 - 140 kg of arch PbWO₄;
 - $(30 \text{ cm})^3$ active volume \rightarrow highly-compact detector;
 - > Transition Edge Sensors (TES) as thermal sensors:
 - \sim 1 keV low-energy threshold;
 - \sim 100 μ s time response.
- RES-NOVA next phases:
 - increase the active volume to increase sensitivity to farther SN events:
 - RES-NOVA¹: (60 cm)³ active volume $\rightarrow \sim 2 \text{ ton of } \operatorname{archPbWO}_4$;
 - RES-NOVA²: (140 cm)³ active volume $\rightarrow \sim 20$ ton of ^{arch}PbWO₄;
 - several tons of Roman ^{arch}Pb (2000 yr old) already stored at LNGS.

Background sources and archaeological lead

- RES-NOVA region of interest (ROI): $E_{NR} < 30$ keV.
- Background sources in ROI:
 - cosmic rays:
 - proposed underground installation at Laboratori Nazionali del Gran Sasso (LNGS): \sim 3600 m.w.e. overburden $\rightarrow \mu$ flux suppressed by factor \sim 10⁶ w.r.t. above ground;
 - > ²³⁸U ²³²Th natural decay chains;
 - > ²¹⁰Pb (from ²³⁸U decay chain):
 - β -decay: Q = 63 keV, $T_{1/2} \sim 22 \text{ yr}$;
 - major background source from PbWO₄ crystals.

Topological background suppression

• Multiple detectors can be fired up by SN- ν interactions in a short time window

SN- ν signal features high multiplicity, while background rate decreases at higher multiplicities \downarrow Signal-to-background ratio is enhanced at higher multiplicity.

Simone Quitadamo - Detecting supernova neutrinos with RES-NOVA archaeological Pb cryogenic detectors

Sensitivity to SN- ν

- High CE ν NS cross section on Pb + high radiopurity of ^{arch}Pb
 - > RES-NOVA demonstrator sensitive to \sim 90% of galactic SN candidates (up to \sim 20 kpc);
 - > RES-NOVA cm-scale detector can collect statistics comparable to kton-scale experiments;
 - > high sensitivity to total SN- ν flux.
- RES-NOVA next phases: increase the active volume to increase sensitivity to farther SN candidates.

Recent measurements

- Several ongoing activities to validate detector technology and crystals purification:
 - ► detailed studies on the intrinsic radiopurity of ^{arch}Pb \downarrow^{210} Pb concentration < 2 · 10⁻¹⁸ g/g \rightarrow activity < 700 µBq/kg (10.1140/epja/i2019-12809-0);

operation of the first ^{arch}PbWO₄ crystal read out by TES (CRESST technology)

300 eV energy threshold (<u>10.1007/s10909-022-02823-8</u>);

> operation of the first kg-scale ^{arch}PbWO₄ crystal
↓
test production of large-mass low-background ^{arch}PbWO₄ crystals (<u>10.1140/epjc/s10052-022-10656-8</u>).

Conclusions

- RES-NOVA project:
 - > newly proposed observatory for SN-*v* exploiting CE*v*NS;
 - > archPb-based low-temperature calorimeters for intrinsic radioactivity suppression;
 - highly-compact detector;
 - ► CE*v*NS neutral-current weak process \rightarrow sensitive to the total SN-*v* flux;
 - > RES-NOVA demonstrator sensitive to galactic SN candidates.
- RES-NOVA can contribute to the effort for the first multi-messenger SN detection involving gravitational waves, electromagnetic counterpart and neutrino burst.

Thanks for your attention!

Backup slides

Supernovae **Brief summary**

- Stars heavier that 8 $M_{_{\odot}}$ undergo core collapse (CC):
 - Stellar nucleosynthesis: after H in the stellar core is exhausted, new elements up to Fe are created by fusion reactions

Fe core is formed, sustained by the degeneracy pressure of electrons;

- <u>Nuclear photodissociation</u>: photons in the core dissociate Fe nuclei: $\gamma + {}^{56}Fe \rightarrow 13^4He + 4n$ \succ $\gamma + {}^4He \rightarrow 2p + 2n$
- <u>Neutronization</u>: protons undergo electron capture interactions: $e^- + p \rightarrow n + \nu_e$ >
 - protons are converted into neutrons \rightarrow burst of v_{i} ;
 - drop of electrons degeneracy pressure \rightarrow <u>Core collapse (CC)</u> \rightarrow neutron star formation;
- <u>Shockwave propagation</u>: infalling matter bounces on NS \rightarrow outgoing shockwave and SN;

All ν /anti- ν flavours emitted:

- electron-positron pair annihilation: $e^- + e^+ \rightarrow \nu + \bar{\nu}$
- nucleon bremsstrahlung \rightarrow creation of ν /anti- ν pairs of all flavours.

electron capture on protons: positron capture on neutrons: $e^{-} + p \rightarrow n + \nu_{e}$ $e^{+} + n \rightarrow p + \bar{\nu}_{e}$

Transition Edge Sensors (TES)

- Transition Edge sensors (TES):
 - thin film of superconductive material deposited on crystal;
 - operated at temperature just below the transition temperature T_c;
 - ▶ energy deposition in crystal \rightarrow temperature increase ΔT

resistance increases along the superconductive transition;

 \succ superconductive transition lies within \sim 1 mK

 \downarrow

high sensitivity to small energy deposition and very low energy threshold (< 1 keV);

> sensitive to athermal phonons \rightarrow fast time response (~100 μ s).

Reconstruction of SN emitted energy

- Reconstruction of SN- ν average energy (<*E*>) and fluence (A_{τ}):
 - parametrization of time-integrated *v* flux:

Normalization factor

Pinching factor

maximum likelihood analysis (experimental data + SN model + f^0) \rightarrow estimate <*E*>, A_{τ} . >

