

Search for solar ⁸B neutrinos with XENONnT

TAUP 2023

Vienna | August 28 - September 1 2023

Christian Wittweg on behalf of the XENON Collaboration

The XENON collaboration

The XENON collaboration

Direct dark matter detection and neutrinos

Detect WIMPs directly by measuring the O(1) keV nuclear recoil after scattering in a large, low background, low threshold detector.

Direct dark matter detection and neutrinos

Coherent elastic neutrino nucleus scattering (CEvNS) of solar ⁸B neutrinos mimics ~ 6 GeV/c² WIMPs!

Direct dark matter detection and neutrinos

But these are not only a background!

They are also a signal!

Dual-phase time projection chamber

Scintillation and ionization:

- Prompt light signal (\$1)
- Secondary light in GXe from drifted charges (\$2)
- Position reconstruction (x, y, z), calorimetry (E) and interaction type (ER/NR)

XENON1T at LNGS (2016 – 2018)

1500 m overburden (3600 m.w.e.)

TPC

84
8" PMTs as water
Cherenkov muon

demi-water

700 t

Cryostat –

XENONnT at LNGS (now)

New ER and NR calibration systems

Larger TPC with 3x active volume

Gd-loaded (planned) water Cherenkov neutron veto

Radon distillation column

Upgraded DAQ with high-energy readout

Liquid xenon purification

Solar neutrinos in XENON1T WIMP results

We expect hundreds of events from

$$R = \phi_{\nu} \cdot \sigma_{\nu} \cdot N_{\mathrm{Xe}} \cdot \mathrm{exposure}$$

• We do not see them because the WIMP analysis only has 0.01 % detection efficiency.

Solar neutrinos in XENON1T WIMP results

Mass (ton)	1.3	1.0 De
ER	627 ± 18	0.8
Neutron	1.43 ± 0.66	
$CE\nu NS$	0.05 ± 0.01	S 0.6 - 1
AC	$0.47^{+0.27}_{-0.00}$	ciem
Surface	106 ± 8	EWG
Total BG	735 ± 20	
WIMP _{best-fit}	3.56	A detection efficiency of ~1
Data	739	increases the signal rate to O(1-10) events/t/yr.

We expect hundreds of events from

$$R = \phi_{\nu} \cdot \sigma_{\nu} \cdot N_{\mathrm{Xe}} \cdot \mathrm{exposure}$$

• We do not see them because the WIMP analysis only has 0.01 % detection efficiency.

- Lower threshold increases expected
 event rate to 2.11 events in 0.6 t x yr
- Detection efficiencies driven by
 - S2 software trigger threshold:

200 → 120 PE

• S1 tight coincidence:

- Lower threshold increases expected
 event rate to 2.11 events in 0.6 t x yr
- Detection efficiencies driven by
 - S2 software trigger threshold:

200 → 120 PE

• S1 tight coincidence:

- Lower threshold increases expected
 event rate to 2.11 events in 0.6 t x yr
- Detection efficiencies driven by
 - S2 software trigger threshold:

200 → 120 PE

• S1 tight coincidence:

- Lower threshold increases expected
 event rate to 2.11 events in 0.6 t x yr
- Detection efficiencies driven by
 - S2 software trigger threshold:

200 → 120 PE

• S1 tight coincidence:

- Lower threshold increases expected
 event rate to 2.11 events in 0.6 t x yr
- Detection efficiencies driven by
 - S2 software trigger threshold:

200 → 120 PE

• S1 tight coincidence:

- Lower threshold increases expected
 event rate to 2.11 events in 0.6 t x yr
- Detection efficiencies driven by
 - S2 software trigger threshold:

200 → 120 PE

• S1 tight coincidence:

 $3 \rightarrow 2 \text{ PMTs}$

The lower threshold comes at the expense of a background rate increase by two orders of magnitude!

- Pileup of PMT dark counts
- Misidentified
 single electrons
- Below-cathode
 and surface events

- Single electrons:
 - delayed extraction
 - photoionization
- Misidentified PMT afterpulses

- Pileup of PMT dark counts
- Misidentified
 single electrons
- Below-cathode
 and surface events

- Single electrons:
 - delayed extraction
 - photoionization
- Misidentified PMT afterpulses

Mitigation strategies:

- Pileup of PMT dark counts
- Misidentified
 single electrons
- Below-cathode
 and surface events

- Single electrons:
 - delayed extraction
 - photoionization
- Misidentified PMT afterpulses

Mitigation strategies:

• Remove "shadow" and "ambience" of large peaks

- Pileup of PMT dark counts
- Misidentified
 single electrons
- Below-cathode
 and surface events

- Single electrons:
 - delayed extraction
 - photoionization
- Misidentified PMT afterpulses

Mitigation strategies:

- Remove "shadow" and "ambience" of large peaks
- Use S1 and S2 correlations unique to AC events...

- Pileup of PMT dark counts
- Misidentified
 single electrons
- Below-cathode
 and surface events

- Single electrons:
 - delayed extraction
 - photoionization
- Misidentified PMT afterpulses

Mitigation strategies:

- Remove "shadow" and "ambience" of large peaks
- Use S1 and S2 correlations unique to AC events...
 - ... in certain observables (e.g. S2 width)

- Pileup of PMT dark counts
- Misidentified
 single electrons
- Below-cathode
 and surface events

- Single electrons:
 - delayed extraction
 - photoionization
- Misidentified PMT afterpulses

Mitigation strategies:

- Remove "shadow" and "ambience" of large peaks
- Use S1 and S2 correlations unique to AC events...
 - ... in certain observables (e.g. S2 width)
 - ... high-dimensional parameter spaces (machine-learning techniques)

- Pileup of PMT dark counts
- Misidentified
 single electrons
- Below-cathode
 and surface events

- Single electrons:
 - delayed extraction
 - photoionization
- Misidentified PMT afterpulses

Mitigation strategies:

- Remove "shadow" and "ambience" of large peaks
- Use S1 and S2 correlations unique to AC events...
 - ... in certain observables (e.g. S2 width)
 - ... high-dimensional parameter spaces (machine-learning techniques)
- Model remaining AC background.

AC cuts and validation in XENON1T

- S2 shadow selection
- Gradient boosted decision tree (GBDT) cut
 - AC features data-driven
 - S2 area, S2 rise time, S2 top PMT area fraction, reconstructed depth z
- Define AC-enriched sideband region with 50 % of AC contained in S2 < 120 PE

AC Signal Rejection Acceptance

65 % 87 %

70 % ≥ 85 %

Measured: Expected: 23 events 27.7 ± 1.4 events

AC cuts and validation in XENON1T

Phys. Rev. Lett. 126 (2021) 091301

Source	Expected	
CEvNS	2.11	
AC	5.14	
ER	0.21	
Radiogenic neutrons	0.04	
Total	7.50	
Observed	6	

Consistent with background-only hypothesis.

p ~ 0.5

AC in XENONnT WIMP analysis

Remove "shadow" of large S2s

Use features of S1 and S2 signals in AC vs. physical events.

See talk by Chris Tunnell on ML in XENONnT at 17:15 h.

Model remaining AC background

AC model validated to 5 % precision.

AC in XENONnT WIMP analysis

AC model validated to 5 % precision.

AC in XENONnT WIMP analysis

WIMP analysis.

AC model validated to 5 % precision.

	Nominal	Best fit		
	ROI		Signal-like	
ER	134	135^{+12}_{-11}	0.92 ± 0.08	
Neutrons	$1.1^{+0.6}_{-0.5}$	1.1 ± 0.4	0.42 ± 0.16	
$CE\nu NS$	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.006	
AC	4.3 ± 0.9	$4.4^{+0.9}_{-0.8}$	0.32 ± 0.06	
Surface	14 ± 3	12 ± 2	0.35 ± 0.07	
Total background	154	152 ± 12	$2.03^{+0.17}_{-0.15}$	
WIMP	• • •	2.6	1.3	
Observed	• • •	152	3	

See talk by Zihao Xu from August 28.

	Nominal Be		est fit	
			Signal-like	
ER	134	135^{+12}_{-11}	0.92 ± 0.08	
Neutrons	$1.1^{+0.6}_{-0.5}$	1.1 ± 0.4	0.42 ± 0.16	
$CE\nu NS$	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.006	
AC	4.3 ± 0.9	$4.4^{+0.9}_{-0.8}$	0.32 ± 0.06	
Surface	14 ± 3	12 ± 2	0.35 ± 0.07	
Total background	154	152 ± 12	$2.03^{+0.17}_{-0.15}$	
WIMP	• • •	2.6	1.3	
Observed	• • •	152	3	

See talk by Zihao Xu from August 28.

Solar neutrinos in XENONnT WIMP results

	Nominal Bearing ROI		Best fit	
			Signal-like	
ER	134	135^{+12}_{-11}	0.92 ± 0.08	
Neutrons	$1.1^{+0.6}_{-0.5}$	1.1 ± 0.4	0.42 ± 0.16	
$CE\nu NS$	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.006	
AC	4.3 ± 0.9	$4.4^{+0.9}_{-0.8}$	0.32 ± 0.06	
Surface	14 ± 3	12 ± 2	0.35 ± 0.07	
Total background	154	152 ± 12	$2.03^{+0.17}_{-0.15}$	
WIMP	• • •	2.6	1.3	
Observed	• • •	152	3	

Next step: Transition to lowthreshold 2-fold coincidence analysis.

⁸B discovery potential in XENONnT

Experiment	Isolated S1	Isolated S2	Max drift	Relative AC	Exposure
XENON1T	11.2 Hz	1.1 mHz	730 µs	1	$0.6 t \times yr$
XENONnT	2.5 Hz	18.5 mHz	2200 µs	~ 11	> 0.6 t × yr

- Lower field:
 - Larger isolated S2 rate
 - Longer drift
 - Affects discrimination, but ER background still negligible for CEvNS
- Increased exposure compared to XENON1T
- Reducing AC rate to the
 XENON1T level would bring a
 8B observation within reach.

Summary

- Liquid xenon detectors of the current generation sensitive to ⁸B solar neutrinos
- Search demonstrated in XENON1T, but did not find a signal
- Accidental coincidence background dominant in low-threshold analysis and mitigated with S1+S2 correlations and strict data selections
- XENONnT will be more sensitive with a larger exposure and improved AC rejection techniques

www.xenonexperiment.org

instagram.com/xenon_experiment

twitter.com/xenonexperiment

XENON at TAUP 2023:

- Monday, 16:45: XENONnT WIMP results by Zihao Xu
- Tuesday, 14:15: MeV signals and new physics by Maxime Pierre
- Tuesday, 17:15: ML in XENONnT by Chris Tunnell
- Poster: Planck mass dark matter by Shengchao Li
- Poster: Surface background modeling by Cecilia Ferrari
- Poster: Radon removal in XENONnT by David Koke
- Poster: Krypton distillation in XENONnT by Johanna Jakob
- Poster: Ultra-clean pumps for noble gas experiments by Andria Michael.

Backup

Inference with Different Sets of Constraints

Light yield: Ly Charge yield: q

Neutrino flux: φ

- Light yield and signal rate highly correlated, so
 XENON1T-only result becomes an upper limit on the combination of both
- Combination of XENON1T, LLNL charge yield and LUX light yield enables to set **upper limit** on neutrino flux $\Phi < 1.4 \cdot 10^7 \, \mathrm{cm}^{-2} \mathrm{s}^{-1} \ (90 \, \% \, \mathrm{C.L.})$
- Measured neutrino flux from SNO enables to set upper limit on the light yield

Light and charge yields at low energy

- No response assumed below 0.5 keV $_{\rm NR}$ in absence of measurements and with detection efficiency below 10-3
- Charge yield measurements by Lenardo et al. set strong Q_Y constraints. Use their NEST v2.1.0 best fit and uncertainty to obtain shape and scale with single parameter q.
- Large light yield uncertainties of $\approx 20 \,\%$ near 1 keV
- Fit L_y measurements using a free parameter that scales the NEST v2.1.0 best-fit curve for measurements between 0.9 - 1.9 keV

XENON1T upper limit on NR light yield from constraining charge yield and neutrino flux.

ROI and backgrounds

- 0.6 t x yr after livetime reducing cuts:
 - S2 shadow, PMT signal sum < 40 pe within first 40 ms of an event.
- 2 or 3 PMT hits with 1 PE \leq S1 \leq 6 PE
- $120 \text{ PE} \le S2 \le 500 \text{ PE}$

GBDT cut in XENON1T

Electron lifetime dependence of CEvNS rate

Assume everything is the same as in XENON1T analysis except for electron drift lifetime.

Non-Standard Neutrino Interactions

Compare integrated rate to SM prediction.

$$\frac{\mathrm{dR}}{\mathrm{dT}} \propto \tilde{Q}_W^2 \quad \text{gives constraint along a line in} \quad \epsilon_{\mathrm{ee}}^{uV} - \epsilon_{\mathrm{ee}}^{dV}$$

Improving XENON1T WIMP Limits

- No positive detection of CEvNS signal
- Use lowered threshold to set improved low-mass WIMP limits down to 3 GeV/c²
- External constraints on neutrino flux and detector response
- Improvement over previous S2-only analysis range

Isolated peaks

Isolated S1:

- Identified as S1, 3-PMT coincidence,
 < 150 PE
- No S2 in maximum drift time window...
- ... or no correlation with S1 and S2
 as defined by BDT or S1 top area
 fraction cuts

Isolated S2:

- Select at the event level and also analyze "ambience" (e.g. lone hits before S1 + S2) around them in order to suppress correlated S1 + S2 events.
- In order to not lose isolated S2s at the modeling stage
- Either S1 < 150 PE or no S1 within the same event window.

Boosted decision tree cut

- Random pairing of isolated S1 and S2 will lead to random drift times and unphysical values for peak features depending on the event position
- In essence multi-parameter space extension of an S2 width cut using gradient boosted decision trees
- Train on data-driven AC templates, pick signal acceptance and associated AC rejection based on full waveform simulation of signals

Shadow cut

- Time veto that rejects everything within certain periods of large S1s or S2s
- Shadow veto rejection based on $S2_{\text{prev}}/\Delta t_{\text{prev}}$
- Position correlation veto based on S2 spatial correlation with preceding S2

AC model in XENONnT WIMP analysis

- Model is purely data-driven, large isolated S1 and S2 samples achieved due to triggerless DAQ
- Isolated S1 rate similar to XENON1T, isolated S2 rate 100 times higher (lower extraction efficiency)
- Make AC template by random pairing of isolated S1 and S2
- AC rate prediction from isolated peak rates after preparing cuts: 3.2 events in SR0 WIMP data
- Suppression at peak (shadow and S2 spatial correlation with preceding large S2) and event level (S2 width, BDT)

AC validation in XENONnT WIMP analysis

- Model validation in AC-domiated samples of science data, ²²⁰Rn and ³⁷Ar:
 - WIMP ROI passing all cuts
 - AC sideband not passing S2 width or BDT

Ar-37 sideband

S1 detection efficiency

- S1 detection efficiency modeled either by:
 - waveform simulation (final model)
 - bootstrapping of S1 hits from ³⁷Ar and ^{83m}Kr S1s at 2.8 keV, 9.4 keV and 32.1 keV (cross-check)
- Grey regions denote invalid areas from requiring 2or 3-PMT tight coincidence within 50 ns
- Data-driven uncertainties from data selection bias,
 energy- and position dependence of S1 pulse shape,
 and statistical uncertainty
- Simulation uncertainties dominated by positiondependence of S1 pulse shape

Neutrino fluxes and recoil spectra

$$T_{\text{max}} = \frac{2E_{\nu}^2}{2E_{\nu} + m_A c^2} \approx \mathcal{O}(1) \text{ keV}$$

CEvNS of solar ⁸B neutrinos mimics ~ 6 GeV/c² WIMPs (neutrino fog)

XENON1T Time Projection Chamber

2 t LXe in active volume

- ~ 1 m diameter
- ~ 1 m length

Highly reflective PTFE walls

74 copper field shaping rings

Five high-transparency electrodes

3" PMTs, low radioactivity, QE ~ 35 % at 175 nm

XENONnT Time Projection Chamber

- 5.9 t active mass (planned 4.0 t fiducial)
- 1.5 m drift, 1.3 m diameter
- 494 PMTs (3"), Hamamatsu R11410-21
- Two sets of concentric field-shaping rings

XENONnT Liquid Purification

drift-time (30 % cathode survival)

XENONnT: 2.2 ms maximum drift (> 90 % cathode survival)

- High purification flux for removing electronegative impurities: $2 \text{ l/min LXe} \approx 350 \text{ kg/h}$
- Low-Rn filters for science data taking
- Achieved electron-lifetime of > 20 ms

XENONnT Radon Distillation Column

Radon-free compressor

LN2/Xe heat exchanger

Xenon

Radon

Reboiler and Xe/Xe heat exchanger

- Constantly remove emanating radon from xenon using difference in vapor pressure
- Remove radon faster than it decays ($T_{1/2} = 3.8 \text{ d}$)
- Liquid xenon inlet and outlet with 0.4 l/min \approx 70 kg/h LXe

XENONnT Radon Distillation Column

- Reached equilibrium concentration of 1.72 µBq/kg by gas extraction only
- Background goal 1 μBq/kg
- Additional factor 2 in Rn
 removal possible in the future
 using originally planned liquid
 extraction

