Studying the Sterile Baryonic Neutrino Using Direct Detection and Spallation Source Experiments

David Alonso-González, Dorian Amaral, Adriana Bariego-Quintana, David Cerdeño & Martín de los Rios*,

Introduction

Introduction

- Coherent elastic neutrino-nucleus scattering
- Spallation-Source experiments
- Dark Matter Direct Detection Experiments

Coherent elastic Neutrino-Nucleus scattering

... And detected by the COHERENT collaboration!!

[Akimov et al. 1708.01294 (2017)]

CEvNS @ Spallation Source Experiments

$$N_{\text{CE}\nu \text{NS}} = \sum_{\nu_{\alpha}} N_{\text{targ}} \int_{E_{\text{th}}}^{E_{R}^{\text{max}}} \int_{E_{\nu}^{\text{min}}}^{E_{\nu}^{\text{max}}} \frac{dN_{\nu_{\alpha}}}{dE_{\nu}} \epsilon(E_{R}) \frac{d\sigma_{\nu_{\alpha}N}}{dE_{R}} dE_{\nu} dE_{R}$$

$$V_{\mu}$$

$$V_{e}$$

$$V_$$

CEvNS @ DM Direct Detection Experiments

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = n_T \sum_{\nu_\alpha} \int_{E_\nu^{\min}} \frac{\mathrm{d}\phi_{\nu_e}}{\mathrm{d}E_\nu} \ P(\nu_e \to \nu_\alpha) \ \frac{\mathrm{d}\sigma_{\nu_{\alpha\,T}}}{\mathrm{d}E_R} \ \mathrm{d}E_\nu \ \text{SuperCDM, etc..}$$

Spallation Source Experiments

DM Direct Detection Experiments

$$v_{\mathsf{e}}$$
 v_{μ} $\overline{v_{\mu}}$

$$v_{\rm e} \overline{v_{\rm e}} v_{\mu} \overline{v_{\mu}} v_{\tau} \overline{v_{\tau}}$$

Spallation Source Experiments

DM Direct Detection Experiments

$$v_{\mathsf{e}}$$
 v_{μ} v_{μ}

Neutrinos up to ~50 MeV

$$v_{\mathsf{e}} v_{\mathsf{e}} v_{\mu} v_{\mu} v_{\tau} v_{\tau}$$

Neutrinos up to ~20 MeV

Spallation Source Experiments

DM Direct Detection Experiments

$$v_{\mathsf{e}}$$
 v_{μ} v_{μ}

Neutrinos up to ~50 MeV

Not very small energy thresholds

$$v_{\mathsf{e}} v_{\mathsf{e}} v_{\mu} v_{\mu} v_{\tau} v_{\tau}$$

Neutrinos up to ~20 MeV

Very small recoil energy thresholds

Spallation Source Experiments

DM Direct Detection Experiments

$$oldsymbol{v}_{\mathsf{e}}$$
 $oldsymbol{v}_{\mu}$ $oldsymbol{\overline{v}}_{\mu}$

Neutrinos up to ~50 MeV

Not very small energy thresholds

$$v_{\rm e}$$
 $v_{\rm e}$ v_{μ} v_{μ} v_{τ} v_{τ}

Neutrinos up to ~20 MeV

Very small recoil energy thresholds

So, why not to combine them??

Sterile Baryonic Neutrino Model

Introduction

- Coherent elastic neutrino-nucleus scattering
- Spallation-Source experiments
- Dark Matter Direct Detection Experiments
- Sterile Baryonic Neutrino Model

Sterile Baryonic Neutrino (SBN)

Pospelov 1103.3261 (2011)]

$$\mathcal{L} \supset rac{m_{Z'}^2}{2} Z'^{\mu} Z'_{\mu} + g_b Z'^{\mu} \overline{
u}_b \gamma_{\mu}
u_b + rac{1}{3} g_q Z'^{\mu} \sum_q \overline{q} \gamma_{\mu} q \, .$$

PARAMETER SPACE

$$egin{aligned} oldsymbol{g_{Z'}}, oldsymbol{m_{Z'}} \ oldsymbol{m_N}, |oldsymbol{V_{eN}}|, ig|oldsymbol{V_{\mu N}}ig|, |oldsymbol{V_{ au N}}| \end{aligned}$$

Sterile Baryonic Neutrino (SBN)

$$\mathcal{L} \supset rac{m_{Z'}^2}{2} Z'^\mu Z'_\mu + g_b Z'^\mu \overline{
u}_b \gamma_\mu
u_b + rac{1}{3} g_q Z'^\mu \sum_q \overline{q} \gamma_\mu q \, .$$

[Foguel et al. 2201.01788

Predicted by the SM: [Freedman (1974)]

$$\frac{d\sigma_{\nu N}}{dE_R} = \frac{G_F^2}{4\pi} Q_v^2 m_N \left(1 - \frac{m_N E_R}{2E_\nu^2}\right) F^2(E_R)$$
$$Q_v = N - (1 - 4\sin^2\theta_W) Z$$

$$\frac{d\sigma_{\alpha 4}}{dE_R} = \frac{g_{Z'}^4 A^2 |U_{\alpha 4}|^2 M_N}{2\pi E_{\nu}^2 (2M_N E_R + m_{Z'}^2)^2} \left[4E_{\nu}^2 - 2E_R (M_N - E_R + 2E_{\nu}) - \frac{m_4^2}{M_N} (M_N - E_R - E_{\nu}) \right] F^2(E_R)$$

Results

Introduction

- Coherent elastic neutrino-nucleus scattering
- Spallation-Source experiments
- Dark Matter Direct Detection Experiments
- Sterile Baryonic Neutrino Model
- Results

Let's study some benchmark points

K)	m_4 [GeV]	$ U_{e4} ^2$	$ U_{\mu4} ^2$	$ U_{\tau 4} ^2$
BP1a	2×10^{-3}	0	9×10^{-3}	0
BP1b	2×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP1c	2×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP1d	2×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP1e	2×10^{-3}	9×10^{-3}	0	0
BP2a	9×10^{-3}	0	9×10^{-3}	0
BP2b	9×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP2c	9×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP2d	9×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP3a	20×10^{-3}	0	9×10^{-3}	0
BP4a	40×10^{-3}	0	9×10^{-3}	0
BP4f	40×10^{-3}	9×10^{-3}	9×10^{-3}	0
BP5a	60×10^{-3}	0	9×10^{-3}	0

	m_4 [GeV]	$ U_{e4} ^2$	$\left U_{\mu4}\right ^2$	$ U_{ au 4} ^2$
BP1a	2×10^{-3}	0	9×10^{-3}	0
BP1b	2×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP1c	2×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP1d	2×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP1e	2×10^{-3}	9×10^{-3}	0	0
BP2a	9×10^{-3}	0	9×10^{-3}	0
BP2b	9×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP2c	9×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP2d	9×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP3a	20×10^{-3}	0	9×10^{-3}	0
BP4a	40×10^{-3}	0	9×10^{-3}	0
BP4f	40×10^{-3}	9×10^{-3}	9×10^{-3}	0
BP5a	60×10^{-3}	0	9×10^{-3}	0

Conclusions

Introduction

- Coherent elastic neutrino-nucleus scattering
- Spallation-Source experiments
- Dark Matter Direct DetectionExperiments
- Sterile Baryonic Neutrino Model
- Results
- Conclusions

- Sterile neutrino models can be probed with Spallation Source (SS) and Direct Detection (DD) experiments.
- DD will be able to access to very low recoil energies, all the neutrino flavours but not big masses.
- SS will be able to access to heavier sterile neutrinos but not to all neutrino flavours.
- Combining DD and SS may help...
 - o improving the significance,
 - constraining the parameter space
 - allowing parameter reconstruction (especially in the couplings),
 - o and allowing model discrimination (Sterile Baryonic Neutrino).

THANK YOU

Back up

CEvNS @ DM Direct Detection Experiments

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = n_T \sum_{\nu_\alpha} \int_{E_\nu^{\min}} \frac{\mathrm{d}\phi_{\nu_e}}{\mathrm{d}E_\nu} \ P(\nu_e \to \nu_\alpha) \ \frac{\mathrm{d}\sigma_{\nu_{\alpha\,T}}}{\mathrm{d}E_R} \ \mathrm{d}E_\nu \ \text{SuperCDM, etc..}$$

Sterile Baryonic Neutrino (SBN)

Pospelov 1103.3261 (2011)]

$$\mathcal{L} \supset rac{m_{Z'}^2}{2} Z'^{\mu} Z'_{\mu} + g_b Z'^{\mu} \overline{
u}_b \gamma_{\mu}
u_b + rac{1}{3} g_q Z'^{\mu} \sum_q \overline{q} \gamma_{\mu} q \, .$$

 Z'^{μ} : baryonic vector boson $U(1)_B$ $(m_{Z'})$

 g_b : $U(1)_B$ gauge coupling

 ν_N : sterile baryonic neutrino (m_N)

Sterile Baryonic Neutrino (SBN)

$$\mathcal{L} \supset rac{m_{Z'}^2}{2} Z'^\mu Z'_\mu + g_b Z'^\mu \overline{
u}_b \gamma_\mu
u_b + rac{1}{3} g_q Z'^\mu \sum \overline{q} \gamma_\mu q \, .$$

[Foguel et al. 2201.01788

1	Let's study son	ne					
<u> </u>	benchmark		m_4 [GeV]	$\left U_{e4}\right ^2$	$ U_{\mu 4} ^2$	$\left U_{ au 4} ight ^2$	-
\	points	BP1a	2×10^{-3}	0	9×10^{-3}	0	-
		BP1b	2×10^{-3}	0	9×10^{-3}	9×10^{-4}	
		7774	2	2	2		
	Experiment	$M_{\rm det}$ (ton)	$E_{ m th} \left({ m keV}_{ m nr} ight)$	$_{(\times 10^{23})}^{N_{\mathrm{POT}}}$	r	$L\left(\mathbf{m}\right)$	$\sigma_{ m sys}$
	ESS	1	20	2.8	0.3	20	5%
		BP2b	9×10^{-3}	0	9×10^{-3}	9×10^{-4}	
		BP2c	9×10^{-3}	0	9×10^{-3}	4×10^{-3}	
		action, seeks	SUSS SOCIETY OF THE SUSSESSION	1923	900 Marie a	88 822-441 16 7	
	Experin	nent	$M_{ m det}$ (ton)		$E_{\rm th}({\rm keV_{nr}})$		σ 8 $_B$
	DARW	VIN	200		1	1	.(4)%
	_	BP4f	40×10^{-3}	9×10^{-3}	9×10^{-3}	0	_
		BP5a	60×10^{-3}	0	9×10^{-3}	0	_
	DARW	BP4f	40×10^{-3}	THE PERSON	9×10^{-3}	0	-

	m_4 [GeV]	$ U_{e4} ^2$	$\left U_{\mu4}\right ^2$	$ U_{\tau 4} ^2$
BP1a	2×10^{-3}	0	9×10^{-3}	0
BP1b	2×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP1c	2×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP1d	2×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP1e	2×10^{-3}	9×10^{-3}	0	0
BP2a	9×10^{-3}	0	9×10^{-3}	0
BP2b	9×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP2c	9×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP2d	9×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP3a	20×10^{-3}	0	9×10^{-3}	0
BP4a	40×10^{-3}	0	9×10^{-3}	0
BP4f	40×10^{-3}	9×10^{-3}	9×10^{-3}	0
BP5a	60×10^{-3}	0	9×10^{-3}	0

	m_4 [GeV]	$ U_{e4} ^2$	$ U_{\mu 4} ^2$	$ U_{ au 4} ^2$
BP1a	2×10^{-3}	0	9×10^{-3}	0
BP1b	2×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP1c	2×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP1d	2×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP1e	2×10^{-3}	9×10^{-3}	0	0
BP2a	9×10^{-3}	0	9×10^{-3}	0
BP2b	9×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP2c	9×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP2d	9×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP3a	20×10^{-3}	0	9×10^{-3}	0
BP4a	40×10^{-3}	0	9×10^{-3}	0
BP4f	40×10^{-3}	9×10^{-3}	9×10^{-3}	0
BP5a	60×10^{-3}	0	9×10^{-3}	0

