The Pacific Ocean Neutrino Experiment

Nathan Whitehorn
Michigan State University
31 August, 2023

The Neutrino Sky: Round 1

Q: How do we make this less blurry?

Ice \rightarrow Water

Simulated 100 TeV Muon

P-ONE

- Goals for the field after IceCube:
- More sources \rightarrow Better resolution
- Better view of our galaxy \rightarrow Northern hemisphere site
- Full-sky coverage \rightarrow Multiple Telescopes
- Much-reduced optical scattering in sea water: $5 x$ better angular resolution, $5 x$ better sensitivity, 10x more sources
- Planning similar km^{3} volume to IceCube

Nature Astronomy 4, 913-915,

- Precision flavor and direction

P-ONE

- Deep (below 2500 m), low-sedimentburden water
- NEPTUNE subsea cable provides power (8-60 KW) and data transport (> $2 \mathrm{Gbit} / \mathrm{s}$)
- Northernhemisphere site sees complementary sky to IceCube and KM3net

P-ONE Collaboration

- Joint European, US, and Canadian project:
- Germany: TUM, Erlangen
- US: Georgia Tech, Drexel, Michigan State
- Canada: Alberta, Simon Fraser, Queen's, Ocean Networks Canada
- UK: University College London
- Poland: Institute for Nuclear Sciences

- Initial ERC+CFI+NSF funding secured, sufficient for the first $\sim 6-7$ mooring lines

More Events

Better Events

- Expected performance $\sim 5 x$ IceCube
- Enabled by less scattering and newer electronics design
- Expect to detect 10-15 times as many sources as IceCube - enough to find what they have in common
- TXS 0506+056 from 3.5 sigma to ~ 15, detectable without EM data

J.P. Twagirayezu (MSU, NSBP 2022)
* assumes Euclidean source distribution,

Pathfinder Instrument: STRAW

- Laser calibrator, cameras, spectrometer
- 10 phototubes on 150-m lines
- Deployed at Cascadia site in 2018 by ONC
- Successfully taking data since
- Successor survey instrument, STRAW-b, deployed fall 2020: 500-meter lines

Smith \& Baker 1981
-- pure water
_ Smith \& Baker 1981 clearest ocean water

Morel \& Prieur 1977 clearest ocean water

- KM3NeT 2006 ocean water

KM3NeT 2010 ocean water

- STRAW 2021 ocean water

P-ONE Instrument Design: Optical Module

3" Photomultiplier Tubes and Gel Pads

17" Encapsulating Glass Pressure Hemisphere

Titanium Mounting Ring

Printed Light Mechanical Support

Electro-OpticalMechanical Cable

Titanium Head Ring

Instrument Design: Optical Module

J. Garriz, MSU

- 16 photomultiplier tubes in all-direction array: < 10 ps stat. error on timing
- Acoustic positioning sensors
- Hybrid copper/fiber timing and data backhaul
- Full waveforms: 210 MSPS, 12-bit readout on all channels

- Firmware trigger logic on FPGA
- ~ 6 W per module power consumption

Project Timeline

- 2018: STRAW-a site survey deployed
- 2020: STRAW-b site survey deployed
- 2022: Finalizing hardware design, core instrumentation acquired
- 2024-25: First full mooring line deployed (P-ONE-1)
- ~2026: Next funded lines deployed
- Late 2020s: Full buildout

Conclusions

- Large diffuse neutrino background up to very high energies seen by IceCube, requires next-generation precision detectors to understand
- P-ONE complementary to KM3net and IceCube-
Gen2, at low cost with low logistical risk
- Beginning construction in ~ 1 year!

Backup

Radioactive Decays

- Continuous process responsible for baseline noise
- Largely K_{40} decay in potassium salts
- Rate traces salinity

Jakub Stucho

Measurement of Radioactive Decays

- Light from Cerenkov and ionization emission from betas
- Multiple correlated photons detected
- Can distinguish energies (and isotopes) weakly
- Sub-0.1\% daily concentration measurement, 3D abundance measurement

Bioluminescence

- Major time-variable source of noise
- Mostly microbial (with large-scale correlations)
- Some large organisms (right)
- Large variation with water conditions and currents, seasonality

Bioluminescence Measurements

- Emission correlation timescale
- Brightness
- Position:
- Side current is from
- 3D positions
- Correlation with turbidity
- Photographs for large organisms

