The Pacific Ocean Neutrino Experiment

Nathan Whitehorn Michigan State University 31 August, 2023

The Neutrino Sky:

Q: How do we make this less blurry?

Ice → **Water**

Simulated 100 TeV Muon

P-ONE

- Goals for the field after IceCube:
 - More sources → Better resolution
 - Better view of our galaxy →
 Northern hemisphere site
 - Full-sky coverage → Multiple Telescopes
- Much-reduced optical scattering in sea water: 5x better angular resolution, 5x better sensitivity,
 10x more sources
- Planning similar km³ volume to IceCube
- Precision flavor and direction

P-ONE

- Deep (below 2500 m), low-sedimentburden water
- NEPTUNE subsea cable provides power (8-60 KW) and data transport (> 2 Gbit/s)
- Northernhemisphere site sees complementary sky to IceCube and KM3net

P-ONE Collaboration

- Joint European, US, and Canadian project:
 - **Germany**: TUM, Erlangen
 - US: Georgia Tech, Drexel, Michigan State
 - Canada: Alberta, Simon Fraser, Queen's, Ocean Networks Canada
 - UK: University College London
 - Poland: Institute for Nuclear Sciences
- Initial ERC+CFI+NSF funding secured, sufficient for the first ~6-7 mooring lines

More Events

Better Events

- Expected performance ~ 5x
 IceCube
- Enabled by less scattering and newer electronics design
- Expect to detect 10-15 times as many sources as IceCube

 enough to find what they have in common
- TXS 0506+056 from 3.5 sigma to ~15, detectable without EM data

J.P. Twagirayezu (MSU, NSBP 2022)

^{*} assumes Euclidean source distribution, average scaling of significance with resolution

Pathfinder Instrument: STRAW

- Laser calibrator, cameras, spectrometer
- 10 phototubes on 150-m lines
- Deployed at Cascadia site in 2018 by ONC
- Successfully taking data since
- Successor survey instrument, STRAW-b, deployed fall 2020: 500-meter lines

150 m —

Top Floats

P-ONE Instrument Design: Optical Module

Instrument Design: Optical Module

- 16 photomultiplier tubes in all-direction array: < 10 ps stat. error on timing
- Acoustic positioning sensors
- Hybrid copper/fiber timing and data backhaul
- Full waveforms: 210 MSPS, 12-bit readout on all channels
- Firmware trigger logic on FPGA
- ~ 6 W per module power consumption

Project Timeline

- 2018: STRAW-a site survey deployed
- 2020: STRAW-b site survey deployed
- 2022: Finalizing hardware design, core instrumentation acquired
- 2024-25: First full mooring line deployed (P-ONE-1)
- ~2026: Next funded lines deployed
- Late 2020s: Full buildout

Conclusions

- Large diffuse neutrino background up to very high energies seen by IceCube, requires next-generation precision detectors to understand
- P-ONE complementary to KM3net and IceCube-Gen2, at low cost with low logistical risk
- Beginning construction in ~ 1 year!

Backup

Radioactive Decays

- Continuous process responsible for baseline noise
- Largely K₄₀ decay in potassium salts
- Rate traces salinity

Jakub Stucho

Measurement of Radioactive Decays

- Light from Cerenkov and ionization emission from betas
- Multiple correlated photons detected
- Can distinguish energies (and isotopes) weakly
- Sub-0.1% daily concentration measurement, 3D abundance measurement

Bioluminescence

- Major time-variable source of noise
- Mostly microbial (with large-scale correlations)
- Some large organisms (right)
- Large variation with water conditions and currents, seasonality

Bioluminescence Measurements

- Emission correlation timescale
- Brightness
- Position:
 - Side current is from
 - 3D positions
 - Correlation with turbidity
- Photographs for large organisms

