

PTOLEMY:

Relic neutrino direct detection

James Vincent Mead

Decoupling in the early universe

[cern]

Cosmic neutrino background

Oldest, slowest & most abundant neutrinos in the universe

$$N_{\nu} = N_f \frac{3}{11} N_{\gamma} \Rightarrow \sim 300/cm^3$$

Influence of local structure...' [Zimmer et al (2023)]

$$\langle v_{rms} \rangle \propto \frac{T}{m_v} > 160 \ km/s$$

$$T_{\nu}(t) = \left(\frac{4}{11}\right)^{\frac{1}{3}} T_{CMB} \Rightarrow \sim 1.92K$$

[arXiv:1910.11878v3]

[arXiv:2306.16444]

Concept

Principles established by Steven Weinberg (1962) revisited (2007)

[arXiv:1902.05508]

PTOLEMY

PonTecorvo Observatory for Light Early-universe Massive-neutrino Yield

Solid state tritium target

Solid state target

- Atomic T storage avoids molecular excitations from T₂ gas
- Operate with larger target masses (100g ~ 10²⁵ atoms)

Aims for PTOLEMY

- Develop target physics predictions (final states & excitations)
- >90% hydrogen loading on nanoporous graphene (NPG)
- Demonstrator moving forward with tritiated graphene $\mathcal{O}(100 \mu g)$

Latest news

- Localisation on graphene lattice results in quantum spread
- Hydrogenated carbon nanotubes provide delocalisation, $\mathcal{O}(\mathring{A})$
- External *B*-field to prevent the formation of molecules

[arXiv:2203.11228]

RF-based electron tracking

• Cyclotron radiation based \vec{p} reconstruction

- 1T field & electron KE at tritium endpoint (~18.6 keV):
 27 GHz central frequency with ~1fW emission
- Explore antenna power threshold & signal integration time
- Fast \vec{p}_{\parallel} extraction from bkg. dominated data, $\sigma(T_{\parallel}) \sim \mathcal{O}(eV)$

y LNA & RFSoC 7mm diameter circular waveguide ⇒ TE₁₁ cut-off ~ 25 GHz

Evolving test setups

- Vacuum & LNA cryogenics
- Emitter & synthetic signal
- Antennas and/or resonator
- Potential-shaping elements
- Source (*e*-gun / *C*-15 / *Kr*-83m)

CST simulation

Parallel motion bouncing between electrodes E_v produces transverse ExB drift along z-axis

RF readout & electronics

Downconverter board

Front-end control board

Naafs, NIKHEF

Transverse drift filter

Spin on KATRIN's MAC-E filter

- Bounce electrodes trap e^- in ExB drift (\vec{v}_{\perp}) along -ve ∇B in filter region
- KE transverse to *B*-field (T_{\perp}) shaved off by work done through $E \cdot \vec{v}_{\perp}$
- 18.6 keV to 0.01 keV in 0.7 m

Specification

- $\Delta T_{\perp} \sim \mathcal{O}(100 meV)$
- Dynamic setting informed by RF-tracker determination of T_{||}
- Acceptance of the filter adapts as per pitch of endpoint e⁻
- Prototype filter magnet completed and tested at Princeton!

[arXiv:2108.10388]

Transverse Drift

TES micro-calorimeter

[arXiv:1808.01892]

Transition edge sensor

- Superconducting film held just below T_c (~100mK)
- Near unit quantum efficiency
- Resolution, $\Delta E \propto T^{3/2}$
- Response time, $\tau_{eff} \propto T_c^{-3}$
- Saturation energy, $E_{sat} \propto T_c$

16 TESs

Energy resolution

- Requires $\Delta E_e = 0.05$ eV at $E_e = 10$ eV
- 20x20 µm pixels at 52 mK $\rightarrow \Delta E_e \sim$ 100 meV with photons
- Extrapolate down to 15x15 μ m² pixels $\rightarrow \Delta E_e \sim 50$ meV
- Soon testing with electrons!

Garrone, INRiM

PTOLEMY Demonstrator

Phase-0: 2023 – Proof of principle

- Calibration e source & silicon drift detector calorimeter
- Electron transport from target to calorimeter
- Filter selecting electrons $\Delta \sim 100 meV$ around endpoint
- Efficiency study using electrons near E_{end}

Phase-1: 2025 – Lowest neutrino mass

- >90% tritium loading on graphene $\mathcal{O}(100\mu g)$ target
- Transition edge sensor implemented as μ -calorimeter

Aims for PTOLEMY

- ST: Develop target physics predictions (final states & excitations)
- LT: Operate with larger target masses (up to 100g ~ 10²⁵ atoms)

Conclusion

High risk, high reward

- Array of novel R&D challenges yet to overcome
- First observation of the CvB with intermediate determination of the lowest neutrino mass

Single electron tracking using CR

- RF-system & readout electronics from HF-analogue systems experts
- Amsterdam test setup: 0.95T magnet and $\mathcal{O}(10K)$ cold head vacuum chamber WIP
- Kassiopeia end-to-end electron transport simulation & rapid solver for RF cavity excitations

PTOLEMY prototype soon to be based at LNGS

- Closer ties being established with neutrino mass experiments and quantum sensor groups
- New magnet commissioning 2023 (ANSALDO Co.) and installation at Gran Sasso
- Demonstrator setup for 2025 full setup for CνB runs in 2030s

Thanks for listening!

[xkcd.com/2240]

Distance of last scatter

Messengers from deep space-time

Gravitational waves

Neutrinos

Ancient and in abundance

Gravitational waves

Neutrinos

[arXiv:1408.0740v2]

[arXiv:1910.11878v3]

Imprint upon the cosmos

Primordial sound waves (baryon acoustic oscillations) seed large scale structure reflected in the CMB

• Anisotropies in the $C\nu B$ result in phase variations which damp the angular power spectrum of the CMB

Frankenstein's monster

Princeton magnet

• B-field in RF region is constant; extends over EM-filter region for $\nabla B \times B$ drift

Tan, Princeton

Continuous magnetic field

Slow ExB drift region

RF trigger & tracking

Transport and CR in a waveguide

- Potential shaping for high-pitch electrons to maximise signal for proximity-based antennas
- Tuning bounce potential to minimise distance from waveguide to coax. side-port increasing solid angle of ~1fW CR emissions received
 - *E*-field excitations in a rectangular cavity (x,y)-plane from 18.6 keV e^- orbiting [0,0,0]
 - Mode decomposition will help us optimise cavity & antenna system design
 - Mode filtering elements to be investigated

El Morabit, UvA

RF readout & electronics

Synthetic signal

- 27 GHz central freq., fW emission, O(μs) length
- Approximate CR to test electronics & antennas

Loop test

- FPGA transmits & receives simultaneously
- Testing shielding & characterising noise
- Measuring losses and interference

Baseline for evolving test setup

- Explore antenna power feasibility threshold
- Test impact of cavity and potential-shaping elements on CR-signal

