Sources of background and veto strategies in the JUND experiment

Loïc Labit <u>labit@cenbg.in2p3.fr</u> on behalf of the JUNO collaboration

Jiangmen Underground Neutrino Observatory

- The JUNO experiment:
 - multipurpose neutrino experiment
 - under construction at 53 km from Yangjiang and Taishan nuclear power plants (26.6 GW_{th})
 - in southeast China
 - ~650 m overburden ~ 2000 m.w.e
 - 20 kTon liquid scintillator
 - (biggest ever built !)
- TAO detector:
 - Ancillary 1-ton detector at ~30 m from one of Taishan's reactor core to precisely measure antineutrino reactor spectrum
- The main purpose:
 - determination of neutrino mass ordering at 3σ level within 6 years of data taking

Petertur design

- Top Tracker (TT):
 - 3 layers of plastic scintillator
 - -2.6×2.6 cm² granularity
 - \rightarrow muon track angular resolution of 0.2°
- Water Cherenkov Detector (WCD):
- -43.5×44 m cylinder
- 35 ktons of ultrapure water
- 2400 20-inch PMTs

 \rightarrow passive shielding against natural radioactivity from surrounding rock and fast neutrons from cosmic muons

Muon detection efficiency of 99.5 %

- Central Detector (CD):
 - 35.4 m diameter acrylic sphere (120 mm thick)
 - 20 ktons of liquid scintillator

- 17 612 20-inch PMTs and 25 600 3-inch PMTs

 \rightarrow Energy resolution of 2.95%/ \sqrt{E}

Neutring detection Reactor antineutrinos are observed by Inverse Beta Decay (IBD)

resulting in a two fold signal:

$$\bar{\nu_e} + p \rightarrow e^+ + n$$

$$e^+ + e^- \rightarrow \gamma + \gamma \text{ (prompt)}$$

$$n + p \rightarrow d + \gamma \text{ (delayed)}$$

- Prompt signal: positron ionisation and annihilation with medium electron
- Delayed signal: neutron capture on hydrogen giving a 2.2 MeV γ

- Energy threshold for the IBD process is: $E(\bar{\nu}_e) > 1.8 MeV$
- The neutrino energy is given by: $E_{vis} = E(e^+) = E(\bar{\nu}_e) 0.8 \text{ MeV}$

Neutring signal and background

'day'

[MeV

Events/0.02

- Visible energy spectrum from oscillated reactor $\bar{\nu}_{e}$
- Background contribution from 6 sources:
 - Accidental background
- Cosmogenic background
- Fast neutrons
- ${}^{13}C(\alpha, n){}^{16}O$
- Geo-neutrinos
- World reactors
- atmospheric neutrinos
- Selection cuts:
- Energy threshold: $E_{vis} > 0.7 MeV$
- Fiducial volume: R < 17.2 m
- Time correlation: $\Delta t_{p-d} < 1 ms$
- Spatial correlation: $\Delta \vec{R}_{p-d} < 1.5 m$
- Muon veto (temporal \oplus spatial)

IBD efficiency [%] Selection No cuts 100All cuts 82.2

After selection: ~47 signal events/day and ~4 background events/day

Accidental background

- Accidental background rate given by: $R_{acc} = R_p \times R_d \times \Delta t_{p-d}$
- Mainly given by 3 types of random coincidences:
 - (radioactivity, radioactivity) Singles rate ~7.6 Hz with 8% of delay-like events Prompt-delay time window ~1.0 ms: $R_{acc}^{rad,rad} \sim 410/day$ Spatial cut gives a reduction factor ~380 $\Rightarrow R_{acc}^{rad,rad} \sim 1.1 / day$
 - (radioactivity, cosmogenics) Delay–like from cosmogenics ~340/day Rate after spatial and time correlation cuts $\Rightarrow R_{acc}^{rad,cosm} \sim 0.01 / day$
 - (radioactivity, spallation neutrons)

Spallation neutron rate ~1.8 Hz reduced to 45/day after muon veto $\Rightarrow R_{acc}^{rad,neut}$ negligible Total accidental rate after muon veto cut estimated to 0.8/day

Fast neutron background

- Muon passing through the rock surrounding WCD and corner clipping muons with short track in water are not tagged
- They produce fast neutrons which mimic IBDs:
 - scatter proton (prompt-like signal) while thermalising
 - captured on H after thermalisation (delay-like signal)
- Rate estimated by MC simulation to be ~0.1/day
- Prompt energy spectrum is flat \Rightarrow small impact on JUNO's sensitivity

35 induced background • α from U and Th decay chain can interact with ¹³C: $\alpha + {}^{13}C \rightarrow {}^{16}O + n$

Prompt–like signal given by:

Proton recoils if the neutron is fast enough

• de-excitation γ from ¹⁶O

Delay-like signal given by the neutron capture on H

 MC simulation gives a rate of 0.05/day after all selection cuts

Neutring background (geg, reactors, atmospherics)

- $\bar{\nu}_e$ emitted in U and Th decay from the Earth constitute the geo-neutrino flux
- Rate of geo-neutrino interacting in JUNO estimated to 1.2/day after all selection cuts with a rate uncertainty of ~30%:
 - 18% for neutrino emitted in the crust and 100% for mantle
 - JUNO will be able to reduce the uncertainty on the geo-neutrino rate
- Energy spectrum shape of geo-neutrino known at 5% level
- Local geological studies ongoing to constrain crustal contribution and tackle largest uncertainty source
- Rate from world reactors estimated to $\sim 1.0/day$ after all selection cuts
- a 50% shape and rate uncertainty considered for this background

• Rate from atmospheric neutrino from simulation within the GENIE framework estimated to $\sim 0.16/day$

Usmagenie baekground Cosmogenic isotopes produced by muon showering in the LS

- ms resp. are sources of correlated background
- Production yields are extrapolated from KamLAND measurement with branching ratio to the $\beta - n$ decay:
 - 150 ^{9}Li /day (51% βn decay)
 - 50 ⁸He /day (16% β n decay) Prog.Part.Nucl.Phys. 123 (2022) 103927
- space-time correlation cuts

• Isotopes with $\beta - n$ decay mainly ⁹Li and ⁸He with half-lives of 178 ms and 119

• Total rate of $\beta - n$ is 84/day reduces to 71/day after fiducial volume and

A dedicated muon veto has been designed to further reduce this background

JUDN veto strategy

- 1ms veto on whole FV applied after μ passing through WCD or CD

 \Rightarrow suppress spallation neutrons and short lived radioisotopes

- For well reconstructed single μ tracks in CD:
 - a 600ms, 400ms, 100ms veto applied on a 1m, 2m, 4m cylindrical volume around the muon track
- For muon bundle tracks (closer than 3m and parallel tracks)
 - single track reconstructed with larger dispersion
 - veto applied with cylinder radius enlarged according to the track dispersion
- For events with no track reconstructed
 - Occurs when more than 2 muons pass through the CD
 - 500ms veto over FV
- 1.2s veto on a 3m radius sphere around neutron capture events

 Muon veto strategy has an IBD selection efficiency of 91.6% while removing 98.8% of cosmogenic background

Summary and Lonelusion

- JUNO is a large multipurpose liquid scintillator detector which main goal is to determine the neutrino mass hierarchy
 - the rate of signal event is estimated to be ~47 events/day
- In this talk we have assessed the main sources of background to the reactor antineutrino signal
- We have presented the dedicated muon veto strategy which have an IBD selection efficiency of 91.6% while removing 98.8% of the cosmogenic background (main correlated background)
- The rate of the various sources of background after all selection cuts is:

Background	Rate (day^{-1})	Rate Uncertainty (%)	Shape Uncertainty (%)
Geoneutrinos	1.2	30	5
World reactors	1.0	2	5
Accidentals	0.8	1	negligible
$^{9}\mathrm{Li}/^{8}\mathrm{He}$	0.8	20	10
Atmospheric neutrinos	0.16	50	50
Fast neutrons	0.1	100	20
$^{13}\mathrm{C}(lpha,\mathrm{n})^{16}\mathrm{O}$	0.05	50	50

