Joint parameter estimation on overlapping gravitational wave signals from coalescing compact binaries with Einstein Telescope and Cosmic Explorer

Tomasz Baka, Justin Janquart, Harsh Narola, Anuradha Samajdar, Tim Dietrich, Chris Van Den Broeck

Signals we get with ET + CE

Over a year:

- 104889 detected BBHs
- 44138 detected BNSs
- 100588 detected NSBHs

Overlaps within 0.1 s

- 32 BBH-BBH
- 46 BBH-BNS
- 78 BBH-NSBH
- 1 NSBH-NSBH
- 0 BNS-BNS
- 0 BNS-NSBH

Size of the data

	Property	BBH (GW150914 like)	BNS (GW170817 like)
	Chirp mass	$31 \mathrm{M} \cdot$	$1.195 \mathrm{M} \cdot$
	Sampling frequency	2048 Hz	4096 Hz
Current detectors	Minimum frequency	20 Hz	20 Hz
	Signal duration	3 s	185 s
	Waveform size	3072	378880

Size of the data

	Property	BBH (GW150914 like)	BNS (GW170817 like)
	Chirp mass	$31 \mathrm{M} \odot$	$1.195 \mathrm{M} \cdot$
Sampling frequency	2048 Hz	4096 Hz	
Current detectors	Minimum frequency	20 Hz	20 Hz
	Signal duration	3 s	185 s
	Waveform size	3072	378880
	Minimum frequency	5 Hz	5 Hz
	Signal duration	35 s	2 h 2 min
	Waveform size	35840	14968832

Size of the data

	Property	BBH (GW150914 like)	BNS (GW170817 like)
	Chirp mass	$31 \mathrm{M} \odot$	$1.195 \mathrm{M} \cdot$
Sampling frequency	2048 Hz	4096 Hz	
Current detectors	Minimum frequency	20 Hz	20 Hz
	Signal duration	3 s	185 s
	Waveform size	3072	378880
	Minimum frequency	5 Hz	5 Hz
	Signal duration	35 s	2 h 2 min
	Waveform size	35840	14968832

BBHs impractical to do with ET, while BNSs computationally impossible

Relative binning

- Choose a reference waveform
- Express other waveforms as ratios to the reference waveform
- The ratios close to reference are well approximated by piecewise linear functions
- Divide the waveform to frequency bands and do computations only on the edges

Size of the data

	Property	BBH (GW150914 like)	BNS (GW170817 like)
	Chirp mass	$31 \mathrm{M} \cdot$	$1.195 \mathrm{M} \cdot$
Sampling frequency	2048 Hz	4096 Hz	
Current detectors	Minimum frequency	20 Hz	20 Hz
	Signal duration	3 s	185 s
	Waveform size	3072	378880
	Minimum frequency	5 Hz	5 Hz
	Signal duration	35 s	2 h 2 min
	Waveform size	35840	14968832

Size of the data

	Property	BBH (GW150914 like)	BNS (GW170817 like)
	Chirp mass	$31 \mathrm{M} \cdot$	$1.195 \mathrm{M} \cdot$
Current detectors	Sampling frequency	2048 Hz	4096 Hz
	Minimum frequency	20 Hz	20 Hz
	Signal duration	3 s	185 s
	Waveform size	3072	378880
ET + CE	Minimum frequency	5 Hz	5 Hz
	Signal duration	35 s	2 h 2 min
ET + CE (relative binning)	Waveform size	2479	14968832

Size of the data

	Property	BBH (GW150914 like)	BNS (GW170817 like)
	Chirp mass	$31 \mathrm{M} \cdot$	$1.195 \mathrm{M} \cdot$
	Sampling frequency	2048 Hz	4096 Hz
Current detectors	Minimum frequency	20 Hz	20 Hz
	Signal duration	3 s	185 s
	Waveform size	3 O	378880
ET + CE	Minimum frequency	5 Hz	5 Hz
	Signal duration	35 s	2 h 2 min
ET + CE (relative binning)	Waveform size	35840	14968832

With Relative binning parameter estimation is as fast as for the shortest BBHs now

Overlapping signals

Signal A

Overlapping signals

Signal A + Signal B

Overlapping signals

Signal A + Signal B = Overlapping signal

How parameter estimation works?

How joint parameter estimation works?

Double the parameter space so that it covers both signals

Modify likelihood to model both signals

Time-order the signals in post-processing

BNS, zero noise

BBH, zero noise

BBH, noise

BBH, noise

Conclusions

- Relative binning generalizes to multiple signals without problem and approximates the likelihood accurately
- We can do accurate PE on overlapping signals modeling both signals at once
- We properly recover injected parameters and the posteriors have appropriate shape (apart from spin parameters)
- Ignoring one of the signals and hierarchical subtraction can often fail to recover injected parameters, even with no noise

