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Introduction & Motivation

• Standard Model (SM) – very successful, but incomplete: e.g. neutrino masses

• → possible extension(s) desired and studied

• one of the most popular scenarios: Left-Right Symmetric Model (LRSM)

• lack of new physics signals close to the electroweak scale

• need of novel ways allowing to probe higher energies
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Left-Right Symmetric Models
• gauge theory respecting the symmetry

• possibly at energies near to the electroweak scale 
→ of high interest, rich phenomenology, extensive literature

• right-handed neutrinos naturally included

• SM Higgs accommodated in the bi-doublet

• left-right symmetry broken down to the SM by an additional scalar
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Pati, Salam: PRD 10 (1974); Senjanovic, Mohapatra: PRD 12 (1975)



Left-Right Symmetric Models
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• usual picture: SU(2) triplet scalars on top of the bi-doublet

• → neutrino masses – both type I and II seesaw possible
• can be viewed as the first step to unification, 

e.g. SO(10) GUT

F. F. Deppisch, T. E. Gonzalo, LG: PRD 96 (2017)



Goal

Cosmology and Particle Physics Seminar 24 / 32 ITP Heidelberg

I infer whether L-R symmetric models yield observable gravitational wave
signature from SU(2)R ⇥ U(1)B�L ! U(1)Y phase transition

I such a probe would be complementary to collider searches

I previous studies of L-R models at finite temperature focused on the
possibility to generate baryon asymmetry of the Universe through
electroweak baryogenesis

Choi, Volkas, hep-ph/9210223Barenboim, Rius, hep-ph/9803215

Our Focus
• infer whether L-R symmetric models yield observable gravitational wave signature from 

SU(2)R × U(1)B−L → U(1)Y phase transition

• such a probe would be complementary to collider searches

• previous studies of L-R models at finite temperature focused on the possibility to 
generate baryon asymmetry of the Universe through electroweak baryogenesis
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• first direct detection of GWs in 2016

• GWs can be also produced during first-order cosmic phase transitions

expansion
and

collision of 
bubbles

Gravitational Waves From PT
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Abbott et al., Phys. Rev. Lett. (2016)

Witten, Phys. Rev. D (1984)



From Phase Transitions to GW

lukas.graf@berkeley.edu Gravitational Imprints of Left-Right Symmetry Breaking 7

From Phase Transitions to Gravitational Waves
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nucleation
of bubbles
containing
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• 1. step: nucleation of bubbles containing the low-T phase 

• decay rate of the false vacuum

• O(3) symmetric Euclidean action

• bubble profile from equation of motion

• nucleation temperature
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to a more complicated scenario. For simplicity, we would like to maintain the ⇢1v4R dominance in
the potential. Hence we choose ⇢1 = 10�3 or 2 ⇥ 10�3 so that ⇢1v4R should be dominant over the
�1 term. In addition, we set tan� = 0 and ↵1 = 0 so that all the ↵ terms do not contribute to V0.

We should note that a tree-level shallow potential is usually vulnerable to the Coleman-Weinberg
correction. For instance, when the potential at the tree level leads to correct values of v and mh,
including the Coleman-Weinberg correction may drastically change these values. Technically, one
may consider two opposite solutions: the true VEVs are dominantly determined by the Coleman-
Weinberg potential, or they are dominantly determined by the tree-level potential. Since the
Coleman-Weinberg potential and the tree-level potential have some free parameters to tune, both
of the solutions can be achieved. The former would imply that the left-right gauge symmetry is
broken radiatively, which could be more involved. For simplicity, we adopt the latter, which means
the Coleman-Weinberg potential is tuned to be subdominant even though the tree-level potential
is already quite shallow. Such suppression of radiative contribution was already employed in [60]
and here we also make use of the Yukawa coupling to achieve tree-level dominance. In that spirit,
we generated another two benchmarks (BP3 and BP4), also listed in Tab. I, for which ⇢1 is much
smaller than for BP1 and BP2 but the ⇢1v4R dominance still holds and the Coleman-Weinberg term
is subdominant.

V. LEFT-RIGHT PHASE TRANSITION

Having thoroughly discussed zero-and finite-temperature aspects of the investigated model in
the previous sections, we are now interested in the question of how a parity-breaking vacuum,
vR 6= vL = 0, can spontaneously emerge from a symmetric high-temperature groundstate, vR =
vL = 0, in the early universe. The following section will therefore be devoted to an analysis of the
corresponding left-right-symmetry-breaking thermal phase transition.

In order to explore the theory’s phase structure, we use the finite-temperature e↵ective potential
Ve↵ which was introduced in Eq. (25) of Section III. Importantly, the global minimum of Ve↵

determines the model’s true groundstate vR(T ) for a given temperature T . In particular, following
vR(T ) from the left-right (LR) symmetric high-temperature phase to the parity-broken phase at
low temperatures allows us to distinguish first- and second-order transitions based on whether or
not two degenerate local minima appear at a certain critical temperature Tc, see also Fig. 1. Our
study of the multi-dimensional parameter space defined in Eq. (31) reveals that both types of
transitions generally exist.

As we are primarily interested in a possible gravitational wave signature from left-right symme-
try breaking, we will in the following concentrate on scenarios where the associated phase transition
is of first order. Such transitions are known to proceed via the nucleation of bubbles within which
the scalar fields have already attained the values of the true groundstate (here: vR 6= 0). Those
bubbles then grow inside an expanding universe that is still in the metastable phase (here: vR = 0).
The properties of a first-order transition are thus predominantly determined by two temperature-
dependent quantities: the bubble nucleation rate �, on the one hand, and the Hubble parameter
H, on the other hand. Following Refs. [25, 26, 61], we estimate the former as

�(T ) ' T 4

✓
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2⇡T

◆3
2

e�S3/T . (32)

Here, the three-dimensional Euclidean action S3 is to be understood as having been evaluated for
the O(3)-symmetric tunneling or bounce solution, which, in turn, is obtained by solving the scalar
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FIG. 1. Finite-temperature e↵ective potential of Eq. (25) for two of the benchmarks of Table I. For each
parameter point we compare the potential at the critical temperature Tc (blue line) with that at the nu-
cleation temperature Tn < Tc (red line). The red circles indicate extrema of the potential. The existence
of two degenerate local minima at Tc implies that the LR-breaking phase transition is of first order for the
considered points. For the actual values of Tn and Tc, we refer the reader to Table II in Section VI.

field’s equation of motion,
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subject to the boundary conditions dr/dx = 0 at x = 0 and r ! 0 as x ! 1 with x denoting the
three-dimensional radial coordinate. In the further course of the present work, we will employ the
CosmoTransitions code [62] both to solve Eq. (33) and to compute the resulting Euclidean action
S3.

Next, the Hubble parameter is given via Friedmann’s equation and can be expressed in terms
of the universe’s radiation and vacuum energy densities ⇢rad and ⇢vac, respectively
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In the above equation, g⇤ = 134 denotes the e↵ective number of relativistic degrees of freedom in the
left-right symmetric model under investigation. Besides, MPl = 2.435⇥ 1018GeV is the reduced
Planck mass. The vacuum energy density is calculated as the potential di↵erence between the
local minimum at r = 0 and the global one at r = vR(T ), i.e. �V (T ) := Ve↵(0, T )� Ve↵(vR(T ), T ).
Note that the vacuum contribution to the H is only expected to be relevant in the case of phase
transitions with a considerable amount of supercooling.

Once both the bubble nucleation rate and the Hubble parameter are known, it is straightforward
to compute the so-called nucleation temperature Tn. It is defined as the temperature where one
bubble per horizon volume is created on average, namely

Z Tc

Tn

dT

T

�(T )

H(T )4
!
= 1 . (35)

As such, Tn is a measure for the temperature at which the phase transition actually occurs and
thus crucially influences the associated gravitational wave spectrum, in particular the position of
its peak frequency (cf. Eqs. (44) and (46) in the next section).
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where S3 is the three-dimensional Euclidean action corresponding to the critical bubble.
We can calculate S3 using
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The scalar field � is obtained by solving scalar field’s equation of motion
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subjected to boundary condition lim
r!1

�(r) = 0 and lim
r!0

d�(r)
dr = 0. We use the CosmoTran-

sitions package [108] to solve the differential equation and compute the action S3. The
phase transition occurs at nucleation temperature Tn, which is defined as the temperature
for which on average one bubble nucleates per horizon volume [109],
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At this temperature, the phenomenological quantities ↵ and � are defined. The parameter
↵ measures the strength of the phase transition and corresponds to vacuum energy released
during the phase transition normalized by total radiation energy density [110],
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Here, radiation energy density ⇢rad is given by ⇢rad =
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30 , where g? = 132.5 for our
case. The parameter � corresponds to inverse time duration of the phase transition [111],
namely,
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where H is the Hubble’s rate.
As argued in the previous section, the left-right symmetry breaking in our model can

be characterized by the pair of parameters {�R, gR}. Therefore, we studied the phase
transition as a function of these two couplings and the results of our numerical analysis
are summarized in Fig. 1. There we show the identified parameter space allowing for the
phase transition to be first-order with its strength represented by the colour of the points.
Given the position of the red region associated with the strong first-order phase transition,
it is apparent that scenarios with small values of �R are most promising for the production
of a detectable gravitational wave signal, which is consistent with findings of Ref. [75]. The
associated values of the gauge coupling gR take on values between 1 and 1.5. Preference
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From Phase Transitions to GW
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• 2. step: expansion and collision of the bubbles

From Phase Transitions to Gravitational Waves (cont’d)
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Gravitational Wave Sources
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• Collisions of bubble walls

• Plasma sound waves

• Plasma turbulence

Kosowsky, Turner, Watkins, Phys. Rev. D (1992)

Hindmarsh et al., Phys. Rev. Lett. (2014)

Caprini, Durrer, Phys. Rev. D (2006)

Spectrum: h2⌦GW(f ; vw ,↵,�,Tn)
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PT parameters

• Collisions of bubble walls

• Plasma sound waves

• Plasma turbulence

Spectrum:
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Figure 1: Gauge coupling gR versus log of quartic coupling �R colour-coded with strength
of the left-right symmetric phase transition measured by rc/Tc. Large rc/Tc values prefer
small values of �R.

for larger values of gR and smaller values of �R rules out a large portion of the parameter
space corresponding to gR > 1.5 and �R < 0.1 (approximately the lower right half of
the plot in Fig. 1). This occurs because the associated vacuum becomes unstable in this
region and fails to satisfy the Linder-Weinberg bound (for details, see Sec. 2.4). Besides
the general study of the promising parameter space we selected five different successful
benchmarks points, for which we show the relevant quantities characterizing the phase
transition in Tab. I.

4 Gravitational Wave Signatures

First-order phase transition in the early Universe could generate gravitational wave signals
observable today. These signals would peak around the millihertz region and they could
be detected by the next-generation space-based detectors such as LISA [25], BBO [26]
and DECIGO [27]. There are three different sources of gravitational waves produced in
the first-order phase transitions: bubble wall collisions, sound waves and magnetohydro-
dynamic turbulence in the plasma, i.e., the total gravitational wave strength is given by
the sum of these as

⌦GWh
2
= ⌦swh

2
+ ⌦turbh

2
+ ⌦collh

2
. (4.37)
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Kosowsky, Turner, Watkins, Phys. Rev. D (1992)

Hindmarsh et al., Phys. Rev. Lett. (2014 )

Caprini, Durrer, Phys. Rev. D (2006) 

h2ΩGW(f; vw, α, β, Tn)

numerical 
simulations PT parameters 



Key Phase Transition Parameters
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• bubble wall velocity vw
§ generally, depends on interaction between ɸ and plasma

§ typically, vw → 1 for strong phase transitions

• normalized available energy

• inverse duration of the PT

Gravitational wave background spectrum h2ΩGW(f; vw, α, β, Tn)

11

Given the nucleation temperature, we can now go on to determine two further phenomenologi-
cally important parameters. First, a measure for the phase transition’s strength is provided by the
energy released during the transition normalized to the universe’s radiation energy density, more
precisely (see e.g. [63])

↵ =
1

⇢rad(Tn)
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!
, (36)

where �V was defined below Eq. (34). Second, the transition’s inverse duration � is obtained via

� = H(Tn)Tn ·
d(S3/T )

dT

����
T=Tn

. (37)

In order to make sure that the use of the above definition of � is justified, we follow Ref. [64] and
additionally check whether the quantity

�02 :=
1

2
H(Tn)

2T 2
n ·

d2(S3/T )

dT 2

����
T=Tn

(38)

is always small compared to �. Indeed, we find that � � �0 (as well as �/H � 1) for all investigated
points. Just as the nucleation temperature, the quantities ↵ and � are vital to determine the
gravitational wave signal and are listed in Table II for our benchmark points of Table I.

As exemplified by the results for our benchmarks BP1 and BP2, a generic5 parameter point of the
considered left-right symmetric model predicts a relatively fast (large �), but weak (small ↵) LR-
breaking phase transition. The gravitational wave spectrum associated with such a transition turns
out to be out of reach of any current or proposed observatory, see Section VI. Still, it is worthwhile to
investigate whether there is some part of the multi-dimensional parameter space defined in Eq. (31)
which is more promising in terms of PT strength – and thus GW signal amplitude – than others.
Since calculating ↵ for a large number of benchmark points is computationally expensive, we employ
an alternative measure to quantify the transition’s strength for this purpose, namely the non-trivial
VEV at the critical temperature normalized by the latter, vc/Tc, where we abbreviated vc := vR(Tc).
In Fig. 2 we show vc/Tc for our benchmark points in particularly interesting two-dimensional
projections of the full parameter space. As is clearly visible strong phase transitions with vc/Tc � 1
only occur for su�ciently small ⇢1 irrespective of the other couplings’ values. Investigating all
possible parameter combinations in an analogous manner, we did not find any similarly significant
correlation between the PT strength and a (dimensionless) coupling other than ⇢1. In total, this
motivates our choice of ⇢1 = O(10�3) for our benchmarks BP3 and BP4, cf. Table I.

From a physics perspective the importance of small ⇢1 to facilitate strong LR-breaking phase
transitions can be understood by starting with the observation that it is ⇢1 which crucially shapes
the model’s tree-level potential in the r field direction, cf. Eq. (24). On the one hand, it governs
the size of the quartic term. On the other hand, and more importantly, it also sets the size of the
triplet mass term µ2

3. More precisely, for a fixed value of vR, the tadpole equation (23c) entails the
following implication

⇢1 ⌧ 1 =) µ3 ⌧ vR . (39)

In other words, choosing ⇢1 to be small brings the model’s r sector near its classically scale-invariant
limit µ3/vR ! 0. Now, it is well-known that phase transitions in theories based on nearly conformal
dynamics are typically strong and of first order [64, 65], which explains the importance of the ⇢1
coupling for the strength of the gravitational wave signal.

5
In the sense that none of the non-zero, dimensionless couplings is particularly small, cf. Eq. (31).
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precisely (see e.g. [63])

↵ =
1

⇢rad(Tn)

 
�V (Tn)�

Tn

4

@�V (T )

@T

����
T=Tn

!
, (36)

where �V was defined below Eq. (34). Second, the transition’s inverse duration � is obtained via

� = H(Tn)Tn ·
d(S3/T )

dT

����
T=Tn

. (37)

In order to make sure that the use of the above definition of � is justified, we follow Ref. [64] and
additionally check whether the quantity

�02 :=
1

2
H(Tn)

2T 2
n ·

d2(S3/T )

dT 2

����
T=Tn

(38)

is always small compared to �. Indeed, we find that � � �0 (as well as �/H � 1) for all investigated
points. Just as the nucleation temperature, the quantities ↵ and � are vital to determine the
gravitational wave signal and are listed in Table II for our benchmark points of Table I.

As exemplified by the results for our benchmarks BP1 and BP2, a generic5 parameter point of the
considered left-right symmetric model predicts a relatively fast (large �), but weak (small ↵) LR-
breaking phase transition. The gravitational wave spectrum associated with such a transition turns
out to be out of reach of any current or proposed observatory, see Section VI. Still, it is worthwhile to
investigate whether there is some part of the multi-dimensional parameter space defined in Eq. (31)
which is more promising in terms of PT strength – and thus GW signal amplitude – than others.
Since calculating ↵ for a large number of benchmark points is computationally expensive, we employ
an alternative measure to quantify the transition’s strength for this purpose, namely the non-trivial
VEV at the critical temperature normalized by the latter, vc/Tc, where we abbreviated vc := vR(Tc).
In Fig. 2 we show vc/Tc for our benchmark points in particularly interesting two-dimensional
projections of the full parameter space. As is clearly visible strong phase transitions with vc/Tc � 1
only occur for su�ciently small ⇢1 irrespective of the other couplings’ values. Investigating all
possible parameter combinations in an analogous manner, we did not find any similarly significant
correlation between the PT strength and a (dimensionless) coupling other than ⇢1. In total, this
motivates our choice of ⇢1 = O(10�3) for our benchmarks BP3 and BP4, cf. Table I.

From a physics perspective the importance of small ⇢1 to facilitate strong LR-breaking phase
transitions can be understood by starting with the observation that it is ⇢1 which crucially shapes
the model’s tree-level potential in the r field direction, cf. Eq. (24). On the one hand, it governs
the size of the quartic term. On the other hand, and more importantly, it also sets the size of the
triplet mass term µ2

3. More precisely, for a fixed value of vR, the tadpole equation (23c) entails the
following implication

⇢1 ⌧ 1 =) µ3 ⌧ vR . (39)

In other words, choosing ⇢1 to be small brings the model’s r sector near its classically scale-invariant
limit µ3/vR ! 0. Now, it is well-known that phase transitions in theories based on nearly conformal
dynamics are typically strong and of first order [64, 65], which explains the importance of the ⇢1
coupling for the strength of the gravitational wave signal.

5
In the sense that none of the non-zero, dimensionless couplings is particularly small, cf. Eq. (31).
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where �̃ ⌘ �2�⇤�2 and i, j are quark generation indices running from 1 to 3. Since we always
consider the case 2 ⌧ 1 ' vEW, it is su�cient to assume y = diag(0, 0, yt) and ỹ = 0. The
Lagrangian then reduces to

LYukawa ◆ yt(QL3�QR3 +QR3�
†QL3) , (11)

where QL3 = (tL, bL)| and QR3 = (tR, bR)|.
The Yukawa terms involving the scalar triplets read

LYukawa ◆ �Y ij
M

⇥
`cLii�2�L`Lj + (L $ R)

⇤
+ h.c. , (12)

where we again sum over all three generations. For the sake of simplicity, we will assume that the
matrix of Majorana Yukawa couplings has the structure

Y ij
M = yM�ij . (13)

with an O(1) real coupling yM . Hence, it is su�cient to investigate the interactions for one fermion
generation and then multiply all diagrams containing lepton loops with the number of generations
Ng = 3. Also, since the terms involving the left- and the right-handed triplet are structurally
identical, it su�ces to concentrate on the left sector. In summary, we consider the terms

LYukawa ◆ �yM`cLi�2�L`L + yM`L�
†
Li�2`

c
L + (L $ R) . (14)

The full scalar tree-level potential including all renormalizable terms that can be built out of
the given particle content and that are allowed by the gauge symmetry reads

Vtree = V� + V� + V�� , (15)

where

V� = � µ2
1Tr[�

†�]� µ2
2(Tr[�̃�

†] + Tr[�̃†�])� µ2
3(Tr[�L�

†
L] + Tr[�R�

†
R]) + �1Tr[�

†�]2

+ �2

⇣
Tr[�̃�†]2 +Tr[�̃†�]2

⌘
+ �3Tr[�̃�

†]Tr[�̃†�] + �4Tr[�
†�](Tr[�̃�†] + Tr[�̃†�]) ,

V� = ⇢1
⇣
Tr[�L�

†
L]

2 +Tr[�R�
†
R]

2
⌘
+ ⇢2(Tr[�L�L]Tr[�

†
L�

†
L] + Tr[�R�R]Tr[�

†
R�

†
R])

+ ⇢3Tr[�L�
†
L]Tr[�R�

†
R] + ⇢4(Tr[�L�L]Tr[�

†
R�

†
R] + Tr[�†

L�
†
L]Tr[�R�R]) ,

V�� = ↵1Tr[�
†�](Tr[�L�

†
L] + Tr[�R�

†
R]) + ↵3(Tr[��

†�L�
†
L] + Tr[�†��R�

†
R])

+ ↵2(Tr[�L�
†
L]Tr[�̃�

†] + Tr[�R�
†
R]Tr[�̃

†�] + h.c.)

+ �1(Tr[��R�
†�†

L] + Tr[�†�L��
†
R]) + �2(Tr[�̃�R�

†�†
L] + Tr[�̃†�L��

†
R])

+ �3(Tr[��R�̃
†�†

L] + Tr[�†�L�̃�
†
R]) , (16)

with �̃ ⌘ �2�⇤�2. All the couplings are assumed to be real for simplicity3. The Higgses appearing
in a viable LRSM scalar potential are expected to acquire the following vacuum expectation values
(VEVs)

h�i =
1
p
2

✓
1 0
0 2ei✓2

◆
, h�Li =

1
p
2

✓
0 0

vLei✓L 0

◆
, h�Ri =

1
p
2

✓
0 0
vR 0

◆
. (17)

3
In principle, some couplings such as ↵2 and �4 could be complex. However, this depends on whether the C-parity or

the P-parity is introduced in the model. The assumption of real couplings can be compatible with both scenarios.

For more details, see Eq. (9) and Eq. (10) in Ref. [6], where the di↵erences have been addressed.
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However, this is not guaranteed for general values of the couplings in Eq. (16). As it has been
studied in Refs. [58, 59], only a part of the full parameter space is able to get such VEVs. We will
adopt the numerical method of Ref. [58] to identify the part of parameter space where Eq. (17) is
a global minimum of the potential. The technical details will be explained in Section IV.

In the LRSM, the bidoublet VEVs are expected to be at the electroweak scale
q

21 + 22 = v ⇡ 246 GeV . (18)

For later use, we also introduce the tan� parameter, defined as

tan� =
2
1

. (19)

The triplet VEVs should be either much higher (vR) or much lower (vL) than the the electroweak
scale. They are connected to 1 and 2 by the well-known seesaw relation of VEVs [7]

�112 cos (✓2 � ✓L) + �2
2
1 cos ✓L + �3

2
2 cos (2✓2 � ✓L) = (2⇢1 � ⇢3)vLvR , (20)

which can be derived from the equations of vanishing first-order derivatives. Therefore, if �1, �2,
and �3 are set to zero, then vL will be zero and vR can be arbitrarily high. In this case, light
neutrino masses are generated only by type-I seesaw. For simplicity, throughout this paper we
always keep �1 = �2 = �3 = 0, and consequently vL = 0. In addition, we also set ✓2 = 0, which
can be justified using the conclusion that spontaneous CP symmetry breaking does not appear for
a considerably large part of the parameter space according to the numerical study in [58].

In summary, in this paper with the assumptions that all the potential parameters are real and
�1 = �2 = �3 = 0, we only consider the following viable VEV alignments:

h�i =
1
p
2

✓
1 0
0 2

◆
, h�Li = 0 , h�Ri =

1
p
2

✓
0 0
vR 0

◆
. (21)

Then the potential at the minimum is

Vmin = �
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2
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1

�
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�
� 2µ2

212 �
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2
µ2
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2
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+
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4
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21 + 22

�
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2
1

2
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�
312 + 1

3
2

�
+

1

4
v4R⇢1

+
1

4
↵1

�
v2R

2
1 + v2R

2
2

�
+ ↵2v

2
R 12 +

1

4
↵3v

2
R

2
2 . (22)

From @Vmin/@1 = @Vmin/@2 = @Vmin/@vR = 0, one can obtain

µ2
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�
21 + 22

�
+ 212�4 +

1

2
v2R↵1 �

↵3

2

v2R 22
21 � 22

, (23a)

µ2
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4

v2R12
21 � 22

, (23b)

µ2
3 = ⇢1v

2
R +

1

2
↵1

�
21 + 22

�
+ 2↵212 +

1

2
↵3

2
2 , (23c)

which will be used to determine the quadratic couplings from the VEVs and quartic couplings.
As we concentrate on LRSMs with a left-right symmetry breaking scale well beyond the reach

of current collider searches, we will assume in the following that vR � 1,2.4 Hence, we will

4
A relatively high scale of vR is important for the new particles to have heavy masses above the LHC bounds but

this may be not su�cient. Eventually for the specific scenarios discussed in this work, we further check the full

mass spectrum of new particles to make sure that they are compatible with various collider searches.
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, (23a)

µ2
2 = (2�2 + �3)12 +

�4

2

�
21 + 22

�
+

↵2

2
v2R +

↵3

4

v2R12
21 � 22

, (23b)

µ2
3 = ⇢1v

2
R +

1

2
↵1

�
21 + 22

�
+ 2↵212 +

1

2
↵3

2
2 , (23c)

which will be used to determine the quadratic couplings from the VEVs and quartic couplings.
As we concentrate on LRSMs with a left-right symmetry breaking scale well beyond the reach

of current collider searches, we will assume in the following that vR � 1,2.4 Hence, we will

4
A relatively high scale of vR is important for the new particles to have heavy masses above the LHC bounds but

this may be not su�cient. Eventually for the specific scenarios discussed in this work, we further check the full

mass spectrum of new particles to make sure that they are compatible with various collider searches.
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the LHC bounds)

• the physical spectrum contains a scalar with mass 
mh ≈ 125 GeV and the properties of the SM Higgs boson; 

all the other bosons (except for the six Goldstone 
bosons) have masses at the same order as vR
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IV. GENERATING SUCCESSFUL SCENARIOS

To facilitate the later study of phase transitions, it is necessary to create some benchmarks with
all the potential parameters numerically given. We shall choose the values of potential parameters
in such a way that both theoretical and phenomenological requirements are satisfied, including:

1. The potential at the tree level is bounded from below (BFB);

2. The potential has a global minimum with the predefined VEVs;

3. The VEVs satisfy: v ⇡ 246 GeV and vR & 104 GeV (to make W±
R su�ciently heavy and

thus satisfy the LHC bounds);

4. The physical spectrum contains a scalar with mass mh ⇡ 125 GeV and the properties of the
SM Higgs boson; all the other bosons (except for the six Goldstone bosons) have masses at
the same order as vR.

The first two requirements are purely theoretical. So far there has been no straightforward
analytical procedure that can be used to thoroughly infer whether a given su�ciently complicated
potential can fully satisfy the BFB and global minimum requirements. Thus we need to adopt a
numerical method (which will be described shortly afterwards) to check the BFB condition and
to search for global minima of the potential. During random generation of numerical samples, to
improve the chance of obtaining BFB potentials, we assume all quartic couplings are non-negative.

The third requirement can be met by taking v, vR, and tan� as input parameters and using
Eqs. (23a), (23b), and (23c) to determine µ2

1, µ
2
2 and µ2

3. The last requirement can be simplified if
↵1 = 0 and tan� is small. In this limit, the full SM Higgs mass

m2
h =

v2

2⇢1

⇥
4�1⇢1 � ↵2

1 + c�s� (�8↵1↵2 + 16�4⇢1)

� 2s2�
�
8↵2

2 + ↵1↵3 � 8 (2�2 + �3) ⇢1
�
� 8c�s

3
�↵2↵3

+s4�
�
16↵2

2 � ↵2
3 � 16 (2�2 + �3) ⇢1

�⇤
+O(v4) (30)

can be approximated as m2
h ⇡ 2�1v2, which requires �1 ⇡

1
2m

2
h/v

2
⇡ 0.13.

Combining the above requirements together, we scan the following parameter space:

v = 246 GeV, vR 2 [104, 106] GeV, tan� = tan 10�3, (31a)

�1 = 0.13, �2 = 0, �3 2 [0, 2], �4 = 0, (31b)

⇢1 2 [0, 0.5], ⇢2 2 [0, 2], ⇢3 2 [1, 2], ⇢4 = 0, (31c)

↵1 = 0, ↵2 2 [0, 0.5], ↵3 2 [0, 1], (31d)

�1 = �2 = �3 = 0. (31e)

Here some quartic couplings are set to zero to simplify the potential and the analysis. Note that we
should keep su�ciently many quartic couplings nonzero to meet the four requirements mentioned
above. For example, ↵i and �i (i = 1, 2, 3) cannot be zero simultaneously, otherwise the potential
would have more massless eigenstates. In addition, ⇢1 and ⇢3 in Eq. (31c) are set in such a way
that ⇢3 is always larger than 2⇢1, which increases the probability of obtaining successful samples
in random generation.

Within the parameter space specified by Eqs. (31a) to (31e), we randomly generate 100 samples.
Because for each sample all the potential parameters in Eq. (16) are numerically given or deter-
mined, we can numerically minimize each scalar potential. In this work, we adopt Mathematica’s
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Left-Right Effective Potential
• the full potential:

• Coleman-Weinberg:

• 1-loop thermal contribution:

• perturbative expansion fails at large T
→ resumed daisy graphs
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6

be primarily interested in evaluating the e↵ective potential in regions of scalar field space, where
the neutral component �0R of the right-handed triplet attains much larger absolute values than the
remaining neutral fields �0

1, �
0
2 and �0L. It is therefore well justified to approximately regard the

e↵ective potential as a function of only a single field, namely of the real part of �0r . Specifically,
the tree-level potential in Eq. (22) can then be simplified to the expression

V0(r) = �
1
2µ

2
3r

2 + 1
4⇢1r

4 with r := Re �0R/
p
2 , (24)

which is used for our further calculations.

III. FINITE-TEMPERATURE EFFECTIVE POTENTIAL

In order to study the left-right phase transition we need to go to the quantum level and construct
the e↵ective potential corresponding to the above defined model. The one-loop daisy-improved
finite-temperature e↵ective potential as a function of r and temperature T can be written as

Ve↵(r, T ) = V0(r) + VCW(r) + VFT(r, T ) + VD(r, T ) . (25)

Here, V0(r) is the tree-level potential from Eq. (24). The temperature-independent Coleman-
Weinberg e↵ective potential VCW in the MS scheme and the Landau gauge is given by

VCW(r) =
1

64⇡2
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i

m4
i (r)

✓
log
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log

m2
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µ2
�

3

2

◆�
, (26)

where the sum in the first term in the square brackets runs over the scalar spectrum of our model,
while the other terms correspond to the gauge bosons and the right-handed neutrino. All the
field-dependent tree-level masses mi are given in Appendix A. The MS renormalization scale µ is
in our later calculations set to the value of vR.

The thermal e↵ective potential VFT reads

VFT(r, T ) =
T 4

2⇡2

"
X

i

JB

✓
m2

i (r)

T 2

◆
+ 6JB

✓
m2

WR
(r)

T 2

◆
+ 3JB

✓
m2

ZR
(r)

T 2

◆
� 6JF

✓
m2

⌫R(r)

T 2

◆#
. (27)

Here, the thermal functions JB and JF for bosons and fermions, respectively, are defined as

JB/F(r
2) =

Z 1

0
dxx2 log

⇣
1± e

p
x2+r2

⌘
. (28)

The last term in Eq. 25 stands for the resummed daisy diagrams representing the leading infrared
divergent higher-loop contributions. This part of the e↵ective potential is given by

VD(r, T ) = �
T

12⇡

X

i


M3

i (r)�m3
i (r)

�
, (29)

where M2
i (r) are the thermal masses obtained as the eigenvalues of the matrix M

2
i (r) +⇧i(r, T )

with M
2
i (r) being the tree-level mass matrices discussed in Appendix A and ⇧i(r, T ) standing for

the matrices of thermal self-energies provided explicitly in Appendix B. The sum runs over all the
bosons present in the studied LRSM.
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while the other terms correspond to the gauge bosons and the right-handed neutrino. All the
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bosons present in the studied LRSM.
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However, this is not guaranteed for general values of the couplings in Eq. (16). As it has been
studied in Refs. [58, 59], only a part of the full parameter space is able to get such VEVs. We will
adopt the numerical method of Ref. [58] to identify the part of parameter space where Eq. (17) is
a global minimum of the potential. The technical details will be explained in Section IV.

In the LRSM, the bidoublet VEVs are expected to be at the electroweak scale
q

21 + 22 = v ⇡ 246 GeV . (18)

For later use, we also introduce the tan� parameter, defined as

tan� =
2
1

. (19)

The triplet VEVs should be either much higher (vR) or much lower (vL) than the the electroweak
scale. They are connected to 1 and 2 by the well-known seesaw relation of VEVs [7]

�112 cos (✓2 � ✓L) + �2
2
1 cos ✓L + �3

2
2 cos (2✓2 � ✓L) = (2⇢1 � ⇢3)vLvR , (20)

which can be derived from the equations of vanishing first-order derivatives. Therefore, if �1, �2,
and �3 are set to zero, then vL will be zero and vR can be arbitrarily high. In this case, light
neutrino masses are generated only by type-I seesaw. For simplicity, throughout this paper we
always keep �1 = �2 = �3 = 0, and consequently vL = 0. In addition, we also set ✓2 = 0, which
can be justified using the conclusion that spontaneous CP symmetry breaking does not appear for
a considerably large part of the parameter space according to the numerical study in [58].

In summary, in this paper with the assumptions that all the potential parameters are real and
�1 = �2 = �3 = 0, we only consider the following viable VEV alignments:

h�i =
1
p
2

✓
1 0
0 2

◆
, h�Li = 0 , h�Ri =

1
p
2

✓
0 0
vR 0

◆
. (21)

Then the potential at the minimum is
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R

2
2 . (22)

From @Vmin/@1 = @Vmin/@2 = @Vmin/@vR = 0, one can obtain
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, (23a)
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2
2 , (23c)

which will be used to determine the quadratic couplings from the VEVs and quartic couplings.
As we concentrate on LRSMs with a left-right symmetry breaking scale well beyond the reach

of current collider searches, we will assume in the following that vR � 1,2.4 Hence, we will

4
A relatively high scale of vR is important for the new particles to have heavy masses above the LHC bounds but

this may be not su�cient. Eventually for the specific scenarios discussed in this work, we further check the full

mass spectrum of new particles to make sure that they are compatible with various collider searches.
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where the sum in the first term in the square brackets runs over the scalar spectrum of our model,
while the other terms correspond to the gauge bosons and the right-handed neutrino. All the
field-dependent tree-level masses mi are given in Appendix A. The MS renormalization scale µ is
in our later calculations set to the value of vR.
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Here, the thermal functions JB and JF for bosons and fermions, respectively, are defined as
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The last term in Eq. 25 stands for the resummed daisy diagrams representing the leading infrared
divergent higher-loop contributions. This part of the e↵ective potential is given by
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where M2
i (r) are the thermal masses obtained as the eigenvalues of the matrix M
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i (r) +⇧i(r, T )

with M
2
i (r) being the tree-level mass matrices discussed in Appendix A and ⇧i(r, T ) standing for

the matrices of thermal self-energies provided explicitly in Appendix B. The sum runs over all the
bosons present in the studied LRSM.
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be primarily interested in evaluating the e↵ective potential in regions of scalar field space, where
the neutral component �0R of the right-handed triplet attains much larger absolute values than the
remaining neutral fields �0

1, �
0
2 and �0L. It is therefore well justified to approximately regard the

e↵ective potential as a function of only a single field, namely of the real part of �0r . Specifically,
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which is used for our further calculations.
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• phase transition gets stronger when ρ1 decreases

• choosing ρ1 to be small brings r sector near scale-invariant limit

• phase transitions in theories 
based on nearly conformal 
dynamics are typically strong 
and of first order
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FIG. 2. Strength of the LR-breaking phase transition as measured by the ratio vc/Tc with vc := vR(Tc).
The randomly generated parameter points are displayed in two-dimensional projections of the full parameter
space defined in Eq. (31). The strongest transitions correspond to the green data points.

VI. GRAVITATIONAL WAVE SIGNATURE

Following the detailed description of the model and the analysis of the phase transition, we are
now fully equipped to discuss the main results of this work and finally present the gravitational
wave signature associated with the left-right symmetry breaking first-order phase transition. The
prerequisite for gravitational wave production is spherical symmetry breaking of the bubbles that
contain a true vacuum. This is what occurs in their collisions and there are generally three distinct
sources for gravitational wave production: collisions of bubble shells [66], sound waves [67] and
magnetohydrodynamic turbulence [68] in the plasma. For all of our benchmark points we compared
↵ with ↵1 parameter (defined in Eq. (25) of [55]) and found that the latter is always larger by
at least a factor of few. This implies that nucleated bubbles expand in what is usually referred to
as a “non-runaway” scenario [55]. In such case only the contributions from the sound waves and
magnetohydrodynamic turbulence in the plasma can induce relevant gravitation wave signature.
Hence, the total gravitational wave strength can be written as the sum of these two components

⌦GWh2 ' ⌦sw h2 + ⌦turb h
2 , (40)

where
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2 = 2.65 · 10�6

✓
H

�

◆✓
v ↵

1 + ↵

◆2✓100

g⇤

◆1/3

vw

✓
f

fsw

◆3✓ 7

4 + 3 (f/fsw)2

◆7/2

, (41)

is the contribution arising from sound waves and
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(42)

stems from magnetohydrodynamic turbulence. In Eq. (41), v represents the e�ciency for the
conversion of latent heat into the bulk motion which yields [55]

v = ↵
�
0.73 + 0.083

p
↵+ ↵

��1
, (43)
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Given the nucleation temperature, we can now go on to determine two further phenomenologi-
cally important parameters. First, a measure for the phase transition’s strength is provided by the
energy released during the transition normalized to the universe’s radiation energy density, more
precisely (see e.g. [63])

↵ =
1

⇢rad(Tn)

 
�V (Tn)�

Tn

4

@�V (T )

@T

����
T=Tn

!
, (36)

where �V was defined below Eq. (34). Second, the transition’s inverse duration � is obtained via

� = H(Tn)Tn ·
d(S3/T )

dT

����
T=Tn

. (37)

In order to make sure that the use of the above definition of � is justified, we follow Ref. [64] and
additionally check whether the quantity

�02 :=
1

2
H(Tn)

2T 2
n ·

d2(S3/T )

dT 2

����
T=Tn

(38)

is always small compared to �. Indeed, we find that � � �0 (as well as �/H � 1) for all investigated
points. Just as the nucleation temperature, the quantities ↵ and � are vital to determine the
gravitational wave signal and are listed in Table II for our benchmark points of Table I.

As exemplified by the results for our benchmarks BP1 and BP2, a generic5 parameter point of the
considered left-right symmetric model predicts a relatively fast (large �), but weak (small ↵) LR-
breaking phase transition. The gravitational wave spectrum associated with such a transition turns
out to be out of reach of any current or proposed observatory, see Section VI. Still, it is worthwhile to
investigate whether there is some part of the multi-dimensional parameter space defined in Eq. (31)
which is more promising in terms of PT strength – and thus GW signal amplitude – than others.
Since calculating ↵ for a large number of benchmark points is computationally expensive, we employ
an alternative measure to quantify the transition’s strength for this purpose, namely the non-trivial
VEV at the critical temperature normalized by the latter, vc/Tc, where we abbreviated vc := vR(Tc).
In Fig. 2 we show vc/Tc for our benchmark points in particularly interesting two-dimensional
projections of the full parameter space. As is clearly visible strong phase transitions with vc/Tc � 1
only occur for su�ciently small ⇢1 irrespective of the other couplings’ values. Investigating all
possible parameter combinations in an analogous manner, we did not find any similarly significant
correlation between the PT strength and a (dimensionless) coupling other than ⇢1. In total, this
motivates our choice of ⇢1 = O(10�3) for our benchmarks BP3 and BP4, cf. Table I.

From a physics perspective the importance of small ⇢1 to facilitate strong LR-breaking phase
transitions can be understood by starting with the observation that it is ⇢1 which crucially shapes
the model’s tree-level potential in the r field direction, cf. Eq. (24). On the one hand, it governs
the size of the quartic term. On the other hand, and more importantly, it also sets the size of the
triplet mass term µ2

3. More precisely, for a fixed value of vR, the tadpole equation (23c) entails the
following implication

⇢1 ⌧ 1 =) µ3 ⌧ vR . (39)

In other words, choosing ⇢1 to be small brings the model’s r sector near its classically scale-invariant
limit µ3/vR ! 0. Now, it is well-known that phase transitions in theories based on nearly conformal
dynamics are typically strong and of first order [64, 65], which explains the importance of the ⇢1
coupling for the strength of the gravitational wave signal.

5
In the sense that none of the non-zero, dimensionless couplings is particularly small, cf. Eq. (31).Konstandin, Servant arXiv:1104.4791
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However, this is not guaranteed for general values of the couplings in Eq. (16). As it has been
studied in Refs. [58, 59], only a part of the full parameter space is able to get such VEVs. We will
adopt the numerical method of Ref. [58] to identify the part of parameter space where Eq. (17) is
a global minimum of the potential. The technical details will be explained in Section IV.

In the LRSM, the bidoublet VEVs are expected to be at the electroweak scale
q

21 + 22 = v ⇡ 246 GeV . (18)

For later use, we also introduce the tan� parameter, defined as

tan� =
2
1

. (19)

The triplet VEVs should be either much higher (vR) or much lower (vL) than the the electroweak
scale. They are connected to 1 and 2 by the well-known seesaw relation of VEVs [7]

�112 cos (✓2 � ✓L) + �2
2
1 cos ✓L + �3

2
2 cos (2✓2 � ✓L) = (2⇢1 � ⇢3)vLvR , (20)

which can be derived from the equations of vanishing first-order derivatives. Therefore, if �1, �2,
and �3 are set to zero, then vL will be zero and vR can be arbitrarily high. In this case, light
neutrino masses are generated only by type-I seesaw. For simplicity, throughout this paper we
always keep �1 = �2 = �3 = 0, and consequently vL = 0. In addition, we also set ✓2 = 0, which
can be justified using the conclusion that spontaneous CP symmetry breaking does not appear for
a considerably large part of the parameter space according to the numerical study in [58].

In summary, in this paper with the assumptions that all the potential parameters are real and
�1 = �2 = �3 = 0, we only consider the following viable VEV alignments:
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Then the potential at the minimum is
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From @Vmin/@1 = @Vmin/@2 = @Vmin/@vR = 0, one can obtain
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1

2
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2
2 , (23c)

which will be used to determine the quadratic couplings from the VEVs and quartic couplings.
As we concentrate on LRSMs with a left-right symmetry breaking scale well beyond the reach

of current collider searches, we will assume in the following that vR � 1,2.4 Hence, we will

4
A relatively high scale of vR is important for the new particles to have heavy masses above the LHC bounds but

this may be not su�cient. Eventually for the specific scenarios discussed in this work, we further check the full

mass spectrum of new particles to make sure that they are compatible with various collider searches.

V. Brdar, LG, A. J. Helmboldt, X. Xu: JCAP 12 (2019)
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FIG. 1. Finite-temperature e↵ective potential of Eq. (25) for two of the benchmarks of Table I. For each
parameter point we compare the potential at the critical temperature Tc (blue line) with that at the nu-
cleation temperature Tn < Tc (red line). The red circles indicate extrema of the potential. The existence
of two degenerate local minima at Tc implies that the LR-breaking phase transition is of first order for the
considered points. For the actual values of Tn and Tc, we refer the reader to Table II in Section VI.

field’s equation of motion,

d2r

dx2
+

2

x

dr

dx
=

dVe↵(r, T )

dr
, (33)

subject to the boundary conditions dr/dx = 0 at x = 0 and r ! 0 as x ! 1 with x denoting the
three-dimensional radial coordinate. In the further course of the present work, we will employ the
CosmoTransitions code [62] both to solve Eq. (33) and to compute the resulting Euclidean action
S3.

Next, the Hubble parameter is given via Friedmann’s equation and can be expressed in terms
of the universe’s radiation and vacuum energy densities ⇢rad and ⇢vac, respectively

H(T )2 =
⇢rad(T ) + ⇢vac(T )

3M2
Pl

=
1

3M2
Pl

✓
⇡2

30
g⇤T

4 +�V (T )

◆
. (34)

In the above equation, g⇤ = 134 denotes the e↵ective number of relativistic degrees of freedom in the
left-right symmetric model under investigation. Besides, MPl = 2.435⇥ 1018GeV is the reduced
Planck mass. The vacuum energy density is calculated as the potential di↵erence between the
local minimum at r = 0 and the global one at r = vR(T ), i.e. �V (T ) := Ve↵(0, T )� Ve↵(vR(T ), T ).
Note that the vacuum contribution to the H is only expected to be relevant in the case of phase
transitions with a considerable amount of supercooling.

Once both the bubble nucleation rate and the Hubble parameter are known, it is straightforward
to compute the so-called nucleation temperature Tn. It is defined as the temperature where one
bubble per horizon volume is created on average, namely

Z Tc

Tn

dT

T

�(T )

H(T )4
!
= 1 . (35)

As such, Tn is a measure for the temperature at which the phase transition actually occurs and
thus crucially influences the associated gravitational wave spectrum, in particular the position of
its peak frequency (cf. Eqs. (44) and (46) in the next section).



• for all benchmark points we find the so-called “non-runaway” scenario ⇒ dominant 
production from sound waves and magnetohydrodynamic turbulence following bubble 
collisions

• sound waves:

• magnetohydrodynamic turbulence:
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FIG. 2. Strength of the LR-breaking phase transition as measured by the ratio vc/Tc with vc := vR(Tc).
The randomly generated parameter points are displayed in two-dimensional projections of the full parameter
space defined in Eq. (31). The strongest transitions correspond to the green data points.

VI. GRAVITATIONAL WAVE SIGNATURE

Following the detailed description of the model and the analysis of the phase transition, we are
now fully equipped to discuss the main results of this work and finally present the gravitational
wave signature associated with the left-right symmetry breaking first-order phase transition. The
prerequisite for gravitational wave production is spherical symmetry breaking of the bubbles that
contain a true vacuum. This is what occurs in their collisions and there are generally three distinct
sources for gravitational wave production: collisions of bubble shells [66], sound waves [67] and
magnetohydrodynamic turbulence [68] in the plasma. For all of our benchmark points we compared
↵ with ↵1 parameter (defined in Eq. (25) of [55]) and found that the latter is always larger by
at least a factor of few. This implies that nucleated bubbles expand in what is usually referred to
as a “non-runaway” scenario [55]. In such case only the contributions from the sound waves and
magnetohydrodynamic turbulence in the plasma can induce relevant gravitation wave signature.
Hence, the total gravitational wave strength can be written as the sum of these two components

⌦GWh2 ' ⌦sw h2 + ⌦turb h
2 , (40)

where
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is the contribution arising from sound waves and
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(42)

stems from magnetohydrodynamic turbulence. In Eq. (41), v represents the e�ciency for the
conversion of latent heat into the bulk motion which yields [55]

v = ↵
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0.73 + 0.083

p
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, (43)
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conversion of latent heat into the bulk motion which yields [55]
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VI. GRAVITATIONAL WAVE SIGNATURE

Following the detailed description of the model and the analysis of the phase transition, we are
now fully equipped to discuss the main results of this work and finally present the gravitational
wave signature associated with the left-right symmetry breaking first-order phase transition. The
prerequisite for gravitational wave production is spherical symmetry breaking of the bubbles that
contain a true vacuum. This is what occurs in their collisions and there are generally three distinct
sources for gravitational wave production: collisions of bubble shells [66], sound waves [67] and
magnetohydrodynamic turbulence [68] in the plasma. For all of our benchmark points we compared
↵ with ↵1 parameter (defined in Eq. (25) of [55]) and found that the latter is always larger by
at least a factor of few. This implies that nucleated bubbles expand in what is usually referred to
as a “non-runaway” scenario [55]. In such case only the contributions from the sound waves and
magnetohydrodynamic turbulence in the plasma can induce relevant gravitation wave signature.
Hence, the total gravitational wave strength can be written as the sum of these two components
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• space-based detectors will be able to probe the 
model for small value of ρ1 (BP3, BP4)

• tree-level shallow potential is vulnerable to the 
CW correction: to this end, for BP3 and BP4 we 
fine-tune RH neutrino Yukawa coupling

• GW strength does not depend on this tuning
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for the assumed bubble wall velocity of vw = 1. The peak frequency of the sound wave contribution,
fsw, equals

fsw = 1.9 · 10�5 v�1
w
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In Eq. (42),

h⇤ = 16.5 · 10�6
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turb = 0.05v [55] and the peak frequency is

fturb = 2.7 · 10�5 v�1
w
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Note that the previously introduced parameters ↵, � and Tn also enter in the expression for the
gravitational wave spectrum (in addition, ↵ also contributes indirectly through v and turb). The
values of these parameters for the four considered benchmark points are given in Table II.

In Fig. 3 we show the gravitational wave spectra for all of our benchmark points and confront
them with the sensitivities of several future space-based detectors. According to the shown spectra,
BP1 and BP2 (benchmark points arising from the general scan without particularly small ⇢1) are
beyond the reach of all considered experiments. For these two points, the strength of produced
gravitational waves surpasses the maximal sensitivity reach of ULTIMATE DECIGO; however, due
to large � (see Table II), the peak frequency exhibits a shift to the region in which none of the
considered detectors operate. Following the identification of the correlation between parameters in
the scalar potential with respect to the strength of phase transition (see again Fig. 2), our more
refined parameter scan identified BP3 and BP4 for which, as obvious from Fig. 3, the testability
is guaranteed. For BP3 and BP4, the parameters of the scalar potential yield a tree-level value of
vR = 10 TeV and vR = 50 TeV, respectively. As discussed in the previous sections, we tune the
right-handed neutrino Yukawa coupling yM in order to attain the same value at the radiative level.
Generally, it is not a problem if radiative e↵ects significantly contribute to the potential and alter
the tree-level vacuum structure. However, in order to simplify our numerical treatment, we have
imposed dominance of the tree-level potential (cf. also the discussion at the end of Section IV). Let
us stress that we explicitly checked that similarly strong GW signals can likewise arise in situations
where still ⇢1 . O(10�3), but where yM is no longer tuned to maintain a given tree-level vacuum
also at loop level. The left-right breaking scale is then predominantly set by the Coleman-Weinberg
potential so that the reliability of benchmark points obtained from tree-level calculations must be
called into question. Still, it serves to demonstrate that the occurrence of a strong gravitational
wave signal depends on the smallness of ⇢1 rather than on a particularly tuned value of yM .

↵ �/H Tn [GeV] Tc [GeV]

BP1 0.0035 4007 5896 6216

BP2 0.0034 3458 5.754⇥ 105 6.063⇥ 105

BP3 0.46 626.2 608.3 9451

BP4 0.18 1386 4484 7469

TABLE II. Values of ↵, �/H, Tn and Tc for the benchmark points considered in this work.
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FIG. 3. Stochastic gravitational wave spectra for the benchmark points given in Table I. We also show the
sensitivity curves of LISA [55], BBO [57] and three stages of the DECIGO experiment [56, 69]. The power-
law integrated sensitivity curves [70] are calculated assuming a runtime of tobs = 5 years and threshold
SNR equal to 10 for a number of forthcoming space-based detectors. As is evident from the figure, the
gravitational wave spectra for BP3 and BP4 intersect several sensitivity curves which indicates that such
experiments would either lead to the discovery or successfully exclude these benchmark points.

From Fig. 3 one can also infer, for BP3 and BP4, the change of the frequency dependence of
the spectrum at around 10�100 Hz. This is the region in which the sound wave contribution, that
is dominant at smaller frequencies, becomes suppressed with respect to the component stemming
from magnetohydrodynamical turbulence in the plasma. This can also be inferred analytically
from Eqs. (41) and (42) from where it is obvious that the sound wave contribution decreases more
strongly at larger frequencies. Namely, for the contribution from sound waves (magnetohydrody-
namic turbulence) we have ⌦swh2 / f�4 (⌦turbh2 / f�5/3) in the limit f ! 1.

In order to provide more quantitative information on the potential for discovering gravitational
waves in the considered left-right symmetric model we define the signal-to-noise ratio (SNR) [70]

SNR =

s

2tobs

Z fmax

fmin

df


⌦GW(f)h2

⌦noise(f)h2

�2
. (47)

Here, tobs is the runtime of a given experiment in seconds, ⌦noiseh2 is the e↵ective strain noise power
spectral density [71] and the integral goes in the range of frequencies (fmin, fmax) in which a given

BP3 SNR: LISA (11.76), B-DECIGO (672.7) 
BP4 SNR: LISA O(10−4), B-DECIGO (16.69)

V. Brdar, LG, A. J. Helmboldt, X. Xu: JCAP 12 (2019)



lukas.graf@berkeley.edu Gravitational Imprints of Left-Right Symmetry Breaking 17

LRSM with Minimal Scalar Sector
• scalar sector: only a pair of doublets:

typically too weak to be observed by the ground-based detectors [24], a variety of planned
space-based interferometers such as LISA [25], BBO [26] or DECIGO [27] may be sensitive
enough to detect it. Given the fact that the minimal SM does not provide a cosmic phase
transition of first-order [28–31], similar observation could be a hint of new particle physics.
In this context, gravitational waves generated by cosmic phase transitions associated with
a variety of beyond the SM scenarios have been studied [32–74], including the conventional
left-right symmetric setup [75]. The electroweak phase transition may become of first-
order due to the presence of additional terms in the scalar potential, which in the context
of left-right symmetric model have been analysed in Refs. [76, 77]. Here we study the
possibility of generation of detectable gravitational waves within the phase transition
associated with the aforementioned left-right symmetric model with minimal Higgs sector
and universal seesaw mechanism providing the masses of the SM fermions. Indeed, we find
that a similar gravitational wave signal can be produced during the left-right symmetry
breaking in our model, with part of the model parameter space being within the reach of
the future space-based detectors.

The following text is organized in this way: after we introduce the studied model
in Section 2, spelling out the considered particle content and its interactions, we investigate
in detail the transition between the left-right symmetric phase and the SM phase in
Section 3, identifying the region of the parameter space in which it is of the first-order.
Consequently, in Section 4, we focus on the gravitational wave signal associated with this
cosmic phase transition, and we confront it with sensitivities of the planned experiments.
After discussing the possible collider signatures of our model in Section 5 we summarize
and conclude in Section 6.

2 The Model

2.1 Scalar sector

The gauge group of the standard left-right symmetric model is SU(3)C ⌦ SU(2)L ⌦
SU(2)R ⌦ U(1)B�L. This group, in our scenario, is spontaneously broken to the desired
gauge symmetry at low energy in two steps, SU(3)C ⌦ SU(2)L ⌦ SU(2)R ⌦ U(1)B�L !
SU(3)C⌦SU(2)L⌦U(1)Y ! SU(3)C⌦U(1)em, via vacuum expectation values (VEVs) of
two doublets (a left-handed and a right-handed) having the following quantum numbers
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Section 3, identifying the region of the parameter space in which it is of the first-order.
Consequently, in Section 4, we focus on the gravitational wave signal associated with this
cosmic phase transition, and we confront it with sensitivities of the planned experiments.
After discussing the possible collider signatures of our model in Section 5 we summarize
and conclude in Section 6.
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Figure 1: Gauge coupling gR versus log of quartic coupling �R colour-coded with strength
of the left-right symmetric phase transition measured by rc/Tc. Large rc/Tc values prefer
small values of �R.

for larger values of gR and smaller values of �R rules out a large portion of the parameter
space corresponding to gR > 1.5 and �R < 0.1 (approximately the lower right half of
the plot in Fig. 1). This occurs because the associated vacuum becomes unstable in this
region and fails to satisfy the Linder-Weinberg bound (for details, see Sec. 2.4). Besides
the general study of the promising parameter space we selected five different successful
benchmarks points, for which we show the relevant quantities characterizing the phase
transition in Tab. I.

4 Gravitational Wave Signatures

First-order phase transition in the early Universe could generate gravitational wave signals
observable today. These signals would peak around the millihertz region and they could
be detected by the next-generation space-based detectors such as LISA [25], BBO [26]
and DECIGO [27]. There are three different sources of gravitational waves produced in
the first-order phase transitions: bubble wall collisions, sound waves and magnetohydro-
dynamic turbulence in the plasma, i.e., the total gravitational wave strength is given by
the sum of these as

⌦GWh
2
= ⌦swh

2
+ ⌦turbh

2
+ ⌦collh

2
. (4.37)
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LG, S. Jana, A. Kaladharan, S. Saad: JCAP 05 (2022)

Figure 3: Gravitational wave peak colour-coded with �R (left) and vR (right). Generally,
the smaller the value of �R, the stronger signal is obtained. Thanks to the fact that
the strongest signals are associated with lower peak frequencies, they can be detected by
LISA. From the plot on the right, one can infer that for a given ⌦GWh

2 smaller values of
vR correspond to lower peak frequencies and vice versa.

the plotted spectra could be detected by FP-DECIGO, BBO and ULTIMATE-DECIGO
experiments, only the first three benchmark points, BP1-BP3, would trigger a signal in B-
DECIGO and LISA inteferometers with single-detector configurations. The corresponding
SNRs are in all the cases well above the threshold value of 10. Namely, taking ⌧ = 3 years,
the BP1, BP2 and BP3 can be probed in LISA with SNR larger than 10

6, 105 and 10
3,

respectively. The first stage of the DECIGO experiment, B-DECIGO, can probe BP1,
BP2 and BP3 with all SNRs of order of 104 � 10

5. Atlthough the SNRs of BP4 and BP5
are obviously smaller than 1, when LISA and B-DECIGO experiments are considered,
these benchmark points can be safely probed by BBO and FP-DECIGO with SNRs in
the range of 104 � 10

6. The change of the slope on the right side of the spectra is caused
by the fact that at larger frequencies the contribution from the bubble wall collisions
becomes dominant over the one induced by sound waves, which decreases faster as f ! 1.
Similarly, the slight wiggle appearing to the left from the maximum of the gravitational
wave spectra is due to the slight shift between peaks of gravitational wave contributions
from sound waves and bubble wall collisions.

In plotting the GW signals in Fig. 3, we have used the standard ansatz for the spectral
shape function [25,122]. Recently, in Refs. [69,123,124] it is suggested that a broken power-
law form for the spectral function is not always necessarily the best choice. In order to
take into account for its variability as well as uncertainty in the spectral function, a general
class of broken power law is more suitable when compared with LISA sensitivities. A form
of such a function is specified with a (p, q, n) tuples; p and q here specify the range of power
laws and n identify the type of the peak in the spectrum (for details, see Refs. [69,123,124]).
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enough to detect it. Given the fact that the minimal SM does not provide a cosmic phase
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In this context, gravitational waves generated by cosmic phase transitions associated with
a variety of beyond the SM scenarios have been studied [32–74], including the conventional
left-right symmetric setup [75]. The electroweak phase transition may become of first-
order due to the presence of additional terms in the scalar potential, which in the context
of left-right symmetric model have been analysed in Refs. [76, 77]. Here we study the
possibility of generation of detectable gravitational waves within the phase transition
associated with the aforementioned left-right symmetric model with minimal Higgs sector
and universal seesaw mechanism providing the masses of the SM fermions. Indeed, we find
that a similar gravitational wave signal can be produced during the left-right symmetry
breaking in our model, with part of the model parameter space being within the reach of
the future space-based detectors.
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in detail the transition between the left-right symmetric phase and the SM phase in
Section 3, identifying the region of the parameter space in which it is of the first-order.
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cosmic phase transition, and we confront it with sensitivities of the planned experiments.
After discussing the possible collider signatures of our model in Section 5 we summarize
and conclude in Section 6.
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SU(3)C⌦SU(2)L⌦U(1)Y ! SU(3)C⌦U(1)em, via vacuum expectation values (VEVs) of
two doublets (a left-handed and a right-handed) having the following quantum numbers
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typically too weak to be observed by the ground-based detectors [24], a variety of planned
space-based interferometers such as LISA [25], BBO [26] or DECIGO [27] may be sensitive
enough to detect it. Given the fact that the minimal SM does not provide a cosmic phase
transition of first-order [28–31], similar observation could be a hint of new particle physics.
In this context, gravitational waves generated by cosmic phase transitions associated with
a variety of beyond the SM scenarios have been studied [32–74], including the conventional
left-right symmetric setup [75]. The electroweak phase transition may become of first-
order due to the presence of additional terms in the scalar potential, which in the context
of left-right symmetric model have been analysed in Refs. [76, 77]. Here we study the
possibility of generation of detectable gravitational waves within the phase transition
associated with the aforementioned left-right symmetric model with minimal Higgs sector
and universal seesaw mechanism providing the masses of the SM fermions. Indeed, we find
that a similar gravitational wave signal can be produced during the left-right symmetry
breaking in our model, with part of the model parameter space being within the reach of
the future space-based detectors.

The following text is organized in this way: after we introduce the studied model
in Section 2, spelling out the considered particle content and its interactions, we investigate
in detail the transition between the left-right symmetric phase and the SM phase in
Section 3, identifying the region of the parameter space in which it is of the first-order.
Consequently, in Section 4, we focus on the gravitational wave signal associated with this
cosmic phase transition, and we confront it with sensitivities of the planned experiments.
After discussing the possible collider signatures of our model in Section 5 we summarize
and conclude in Section 6.

2 The Model

2.1 Scalar sector

The gauge group of the standard left-right symmetric model is SU(3)C ⌦ SU(2)L ⌦
SU(2)R ⌦ U(1)B�L. This group, in our scenario, is spontaneously broken to the desired
gauge symmetry at low energy in two steps, SU(3)C ⌦ SU(2)L ⌦ SU(2)R ⌦ U(1)B�L !
SU(3)C⌦SU(2)L⌦U(1)Y ! SU(3)C⌦U(1)em, via vacuum expectation values (VEVs) of
two doublets (a left-handed and a right-handed) having the following quantum numbers
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Figure 6: Current collider limits and sensitivities for future collider experiments in the
gauge coupling (gR) versus the heavy gauge boson mass (MWR) plane. The light red
shaded region indicates the current LHC limit, whereas the red dashed line indicates
the future sensitivity for HL-LHC with a center of mass-energy

p
s = 14 TeV and an

integrated luminosity of L = 3 ab�1. Colour-coded points depict the maximum amplitude
of ⌦GWh

2 for the scenarios associated with gravitational wave signal detectable by planned
space-based interferometers. Note that these collider limits and sensitivities are based on
particular assumptions, and they are not generic for this model. See text for details.

5 Collider Implications

The emergence of new heavy gauge bosons (WR, ZR), scalar H, and vector-like fermions
from the left-right symmetric universal seesaw framework would have several collider
implications. This section therefore discusses some of the possible tests of our model.

The heavy charged gauge boson WR inherits couplings with right-handed SM fermions,
but the heavy neutral gauge boson ZR can communicate with both the left-handed and
the right-handed SM fermions. In the left-right symmetric model with triplet scalars,
assuming VL = VR (here, VL (VR) is the left-handed (right-handed) CKM mixing matrix),
the limit on the mass of the WR vector boson, MWR � 2.5 gR TeV, must be satisfied to
suppress the flavour violating interactions mediated by WR. The most dangerous aspect is
that such processes involve meson-antimeson oscillations, for example, K0

L
�K

0
S
, B0

i
�B

0
i

mixings (i = d, s) arising at one-loop level. As discussed earlier, a strong first-order
phase transition in the model under consideration requires gR ⇠ 1.5, which would lead
to a bound of MWR � 4 TeV. Experimental limit on WR mass depends on the specific
values of the Yukawa couplings as well as the masses of vector-like fermions. The bound
quoted above, however, can be significantly relaxed with some judicious choice of the
relevant Yukawa couplings; see for example Refs. [23, 135]. Typically, both light and
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• gravitational wave signature from first-order phase transition associated to 
SU(2)R × U(1)B−L → U(1)Y investigated

• although the phase transition is relatively weak for a generic point of the parameter 
space, testable gravitational wave signature arises in ρ1 ≪ O(1) “scale-invariant” limit

• gravitational wave searches will provide a test not only for the mechanism of LR 
symmetry breaking, but also for the generation of neutrino masses

• LR symmetric models therefore feature another powerful probe, which is 
complementary to collider searches, and which can lead to either novel constraints or 
remarkable discoveries

Summary
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space, testable gravitational wave signature arises in ρ1 ≪ O(1) “scale-invariant” limit
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BP1 BP2 BP3 BP4

v/GeV 246 246 246 246

vR/GeV 104 106 104 5⇥ 104

tan� 10�3 10�3 0 0

�1 0.13 0.13 0.13 0.13

�2 0 0 0 0

�3 1.2040 0.88814 0.6 0.6

�4 0 0 0 0

⇢1 0.13414 0.11146 0.001 0.002

⇢2 1.2613 1.4109 0.900218 0.401126

⇢3 1.5140 1.5489 0.900215 0.401126

⇢4 0 0 0 0.040113

↵1 0 0 0 0

↵2 0.30246 0.15557 0 0

↵3 0.10765 0.11185 1.14815 0.378138

�1, 2, 3 0 0 0 0

g 0.65 0.65 0.65 0.65

gB�L 0.4324 0.4324 0.4324 0.4324

yt 0.95 0.95 0.95 0.95

yM 1 1 0.78595 0.52404

TABLE I. Numerical values of the four selected benchmarks studied in this work.

built-in function NMinimize for numerical minimization. During the numerical process, if the po-
tential is not BFB, then the iterative processes of numerical minimization will be divergent, which
can be obviously detected.

To find the global minimum of the potential, we repeat the minimization several times, each
time with a di↵erent initial searching point for the iterative processes. This can be achieved by
setting the random seed of NMinimize. Among the minima obtained in the repetition, the deepest
one is expected to be the global minimum at a high confidence level. It should be noticed that due
to some discrete symmetries (e.g., the parity symmetry) the potential always has multiple global
minima with an equal depth. So in general, if a global minimum is obtained in this way, it may
be of a di↵erent form as Eq. (21). To solve this problem, we also minimize the potential V0 in
Eq. (22), with respect to 1, 2 and vR. If the minimum obtained in such way has the same depth
as the global minimum obtained in the general minimization process, then we label this sample as
a viable benchmark.

After the above numerical process, we obtain 74 viable samples from the 100 random samples.
To understand the e↵ect of higher values of vR, we also generate another set of samples with the
same parameter setting as Eqs. (31a) to (31e) except for vR = 106 GeV. In this case, we obtain
82 viable samples. All these samples are further passed to the next step for the study of phase
transition and GW signals. Two of them are selected as benchmarks (BP1 and BP2) in our study,
and their numerical values are listed in Tab. I.

In Sec. V, we will demonstrate that in order to have significant GW signals, the potential should
have su�ciently small ⇢1. Hinted by the correlation of the GW signals and ⇢1, we shall inspect some
cases with small ⇢1. When ⇢1 is very small, however, the ⇢1v4R term would be subdominant, leading



• ground-based observatories: LIGO and Virgo (phases O2, O3 and “Design”)

• space-based detectors: LISA, Big Bang Observer, DECIGO (two stages: B-DECIGO 
and FP-DECIGO)

• we define signal-to-noise ratio (SNR):

• Ωnoiseh2 is effective strain noise power spectral density (different from sensitivity 
curves)

• for all space-based measurements tobs = 5 years assumed
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FIG. 3. Stochastic gravitational wave spectra for the benchmark points given in Table I. We also show the
sensitivity curves of LISA [55], BBO [57] and three stages of the DECIGO experiment [56, 69]. The power-
law integrated sensitivity curves [70] are calculated assuming a runtime of tobs = 5 years and threshold
SNR equal to 10 for a number of forthcoming space-based detectors. As is evident from the figure, the
gravitational wave spectra for BP3 and BP4 intersect several sensitivity curves which indicates that such
experiments would either lead to the discovery or successfully exclude these benchmark points.

From Fig. 3 one can also infer, for BP3 and BP4, the change of the frequency dependence of
the spectrum at around 10�100 Hz. This is the region in which the sound wave contribution, that
is dominant at smaller frequencies, becomes suppressed with respect to the component stemming
from magnetohydrodynamical turbulence in the plasma. This can also be inferred analytically
from Eqs. (41) and (42) from where it is obvious that the sound wave contribution decreases more
strongly at larger frequencies. Namely, for the contribution from sound waves (magnetohydrody-
namic turbulence) we have ⌦swh2 / f�4 (⌦turbh2 / f�5/3) in the limit f ! 1.

In order to provide more quantitative information on the potential for discovering gravitational
waves in the considered left-right symmetric model we define the signal-to-noise ratio (SNR) [70]

SNR =

s

2tobs

Z fmax

fmin

df


⌦GW(f)h2

⌦noise(f)h2

�2
. (47)

Here, tobs is the runtime of a given experiment in seconds, ⌦noiseh2 is the e↵ective strain noise power
spectral density [71] and the integral goes in the range of frequencies (fmin, fmax) in which a given


