

# Gravitational Imprints of Left-Right Symmetry Breaking

Lukáš Gráf

UC Berkeley & UC San Diego

TAUP, Vienna, August 2023



### Introduction & Motivation

- Standard Model (SM) very successful, but incomplete: e.g. neutrino masses
- → possible extension(s) desired and studied
- one of the most popular scenarios: Left-Right Symmetric Model (LRSM)
- lack of new physics signals close to the electroweak scale
- need of novel ways allowing to probe higher energies



# Left-Right Symmetric Models

• gauge theory respecting the symmetry  $SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$ 

Pati, Salam: PRD 10 (1974); Senjanovic, Mohapatra: PRD 12 (1975)

- possibly at energies near to the electroweak scale
  - → of high interest, rich phenomenology, extensive literature
- right-handed neutrinos naturally included

$$(1, 2, 1, -1) \equiv L = (\nu_L \ e_L)^T$$

$$(1, 1, 2, -1) \equiv R = (\nu_R \ e_R)^T$$

SM Higgs accommodated in the bi-doublet

$$(1, 2, 2, 0) \equiv \Phi = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix}$$

left-right symmetry broken down to the SM by an additional scalar



# Left-Right Symmetric Models

usual picture: SU(2) triplet scalars on top of the bi-doublet

$$(1, 3, 1, 0) \equiv \Delta_L = \begin{pmatrix} \frac{1}{\sqrt{2}} \delta_L^+ & \delta_L^{++} \\ \delta_L^0 & -\frac{1}{\sqrt{2}} \delta_L^+ \end{pmatrix}$$

$$(1, 1, 3, 0) \equiv \Delta_R = \begin{pmatrix} \frac{1}{\sqrt{2}} \delta_R^+ & \delta_R^{++} \\ \delta_R^0 & -\frac{1}{\sqrt{2}} \delta_R^+ \end{pmatrix}$$

- → neutrino masses both type I and II seesaw possible
- can be viewed as the first step to unification, e.g. SO(10) GUT

$$SO(10)$$

$$\downarrow$$

$$SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$$

$$\downarrow$$

$$SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$$





### Our Focus

- infer whether L-R symmetric models yield observable gravitational wave signature from  $SU(2)_R \times U(1)_{B-L} \rightarrow U(1)_Y$  phase transition
- such a probe would be complementary to collider searches
- previous studies of L-R models at finite temperature focused on the possibility to generate baryon asymmetry of the Universe through electroweak baryogenesis





### **Gravitational Waves From PT**

first direct detection of GWs in 2016

Abbott et al., Phys. Rev. Lett. (2016)

GWs can be also produced during first-order cosmic phase transitions

Witten, Phys. Rev. D (1984)





### From Phase Transitions to GW

- 1. step: nucleation of bubbles containing the low-T phase
- decay rate of the false vacuum  $\Gamma(T) \simeq T^4 \left(\frac{S_3}{2\pi T}\right)^{\frac{3}{2}} {\rm e}^{-S_3/T}$
- O(3) symmetric Euclidean action

$$S_3 = \int_0^\infty dr dr^2 \left[ \frac{1}{2} \left( \frac{d\phi(r)}{dr} \right)^2 + V(\phi, T) \right]$$

bubble profile from equation of motion

$$\frac{\mathrm{d}^2 \phi}{\mathrm{d}r^2} + \frac{2}{r} \frac{\mathrm{d}\phi}{\mathrm{d}r} = \frac{\mathrm{d}V(\phi, T)}{\mathrm{d}r}$$

$$\lim_{r \to 0} \frac{\mathrm{d}\phi(r)}{\mathrm{d}r} = 0 \quad \lim_{r \to \infty} \phi(r) = 0$$

• nucleation temperature 
$$\int_{T_n}^{T_c} \frac{\mathrm{d}T}{T} \frac{\Gamma(T)}{H(T)^4} \stackrel{!}{=} 1$$





### From Phase Transitions to GW

• 2. step: expansion and collision of the bubbles

#### GRAVITATIONAL WAVE SOURCES

$$\Omega_{\rm GW}h^2 = \Omega_{\rm sw}h^2 + \Omega_{\rm turb}h^2 + \Omega_{\rm coll}h^2$$

Collisions of bubble walls

Kosowsky, Turner, Watkins, Phys. Rev. D (1992)

Plasma sound waves

Hindmarsh et al., Phys. Rev. Lett. (2014)

Plasma turbulence

Spectrum:  $h^2\Omega_{GW}(f; v_w, \alpha, \beta, T_n)$ 





## Key Phase Transition Parameters

### Gravitational wave background spectrum $h^2\Omega_{GW}(f; v_w, \alpha, \beta, T_n)$

- bubble wall velocity v<sub>w</sub>
  - generally, depends on interaction between φ and plasma
  - typically,  $v_w \rightarrow 1$  for strong phase transitions
- normalized available energy  $\alpha = \frac{1}{\rho_{\mathrm{rad}}(T_n)} \left( \Delta V(T_n) \frac{T_n}{4} \left. \frac{\partial \Delta V(T)}{\partial T} \right|_{T=T_n} \right)$
- inverse duration of the PT  $\beta = H(T_n)T_n \cdot \left. \frac{\mathrm{d}(S_3/T)}{\mathrm{d}T} \right|_{T=T_n}$



## General Approach





# L-R Symmetry: The Usual Setup

tree level scalar potential:

$$V_{\text{tree}} = V_{\Phi} + V_{\Delta} + V_{\Phi\Delta}$$

$$\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix} \qquad V_{\Phi} = -\mu_1^2 \mathrm{Tr}[\Phi^{\dagger}\Phi] - \mu_2^2 (\mathrm{Tr}[\tilde{\Phi}\Phi^{\dagger}] + \mathrm{Tr}[\tilde{\Phi}^{\dagger}\Phi]) - \mu_3^2 (\mathrm{Tr}[\Delta_L \Delta_L^{\dagger}] + \mathrm{Tr}[\Delta_R \Delta_R^{\dagger}]) + \lambda_1 \mathrm{Tr}[\Phi^{\dagger}\Phi]^2 \\ \qquad \qquad \qquad + \lambda_2 \left( \mathrm{Tr}[\tilde{\Phi}\Phi^{\dagger}]^2 + \mathrm{Tr}[\tilde{\Phi}^{\dagger}\Phi]^2 \right) + \lambda_3 \mathrm{Tr}[\tilde{\Phi}\Phi^{\dagger}] \mathrm{Tr}[\tilde{\Phi}^{\dagger}\Phi] + \lambda_4 \mathrm{Tr}[\Phi^{\dagger}\Phi] (\mathrm{Tr}[\tilde{\Phi}\Phi^{\dagger}] + \mathrm{Tr}[\tilde{\Phi}^{\dagger}\Phi]) \\ \langle \Delta_L \rangle = 0 \qquad \qquad V_{\Delta} = \rho_1 \left( \mathrm{Tr}[\Delta_L \Delta_L^{\dagger}]^2 + \mathrm{Tr}[\Delta_R \Delta_R^{\dagger}]^2 \right) + \rho_2 (\mathrm{Tr}[\Delta_L \Delta_L] \mathrm{Tr}[\Delta_L^{\dagger} \Delta_L^{\dagger}] + \mathrm{Tr}[\Delta_R \Delta_R] \mathrm{Tr}[\Delta_R^{\dagger} \Delta_R^{\dagger}]) \\ \langle \Delta_R \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ v_R & 0 \end{pmatrix} \qquad \qquad V_{\Phi\Delta} = \alpha_1 \mathrm{Tr}[\Phi^{\dagger}\Phi] (\mathrm{Tr}[\Delta_L \Delta_L^{\dagger}] + \mathrm{Tr}[\Delta_R \Delta_R^{\dagger}]) + \alpha_3 (\mathrm{Tr}[\Phi\Phi^{\dagger} \Delta_L \Delta_L^{\dagger}] + \mathrm{Tr}[\Phi^{\dagger}\Phi \Delta_R \Delta_R^{\dagger}]) \\ \qquad \qquad \qquad \qquad + \alpha_2 (\mathrm{Tr}[\Delta_L \Delta_L^{\dagger}] \mathrm{Tr}[\tilde{\Phi}\Phi^{\dagger}] + \mathrm{Tr}[\Delta_R \Delta_R^{\dagger}]) + \alpha_3 (\mathrm{Tr}[\Phi\Phi^{\dagger} \Delta_L \Delta_L^{\dagger}] + \mathrm{Tr}[\Phi^{\dagger}\Phi \Delta_R \Delta_R^{\dagger}]) \\ \qquad \qquad \qquad + \alpha_2 (\mathrm{Tr}[\Delta_L \Delta_L^{\dagger}] \mathrm{Tr}[\tilde{\Phi}\Phi^{\dagger}] + \mathrm{Tr}[\Delta_R \Delta_R^{\dagger}]) + \beta_3 (\mathrm{Tr}[\Phi\Delta_R \Phi^{\dagger} \Delta_L^{\dagger}] + \mathrm{Tr}[\Phi^{\dagger} \Delta_L \Phi\Delta_R^{\dagger}]) \\ \qquad \qquad \qquad + \beta_3 (\mathrm{Tr}[\Phi\Delta_R \Phi^{\dagger} \Delta_L^{\dagger}] + \mathrm{Tr}[\Phi^{\dagger} \Delta_L \Phi\Delta_R^{\dagger}]) + \beta_2 (\mathrm{Tr}[\tilde{\Phi}\Delta_R \Phi^{\dagger} \Delta_L^{\dagger}] + \mathrm{Tr}[\tilde{\Phi}^{\dagger} \Delta_L \Phi\Delta_R^{\dagger}]) \\ \qquad \qquad \qquad \qquad + \beta_3 (\mathrm{Tr}[\Phi\Delta_R \Phi^{\dagger} \Delta_L^{\dagger}] + \mathrm{Tr}[\Phi^{\dagger} \Delta_L \Phi\Delta_R^{\dagger}]) ,$$



Dev et al., JHEP 02 (2019)

# Generating Benchmark Points

- $v = 246 \text{ GeV}, v_R \in [10^4, 10^6] \text{ GeV}, \tan \beta = \tan 10^{-3},$  $\lambda_1 = 0.13, \ \lambda_2 = 0, \ \lambda_3 \in [0, \ 2], \ \lambda_4 = 0,$
- $\rho_1 \in [0, 0.5], \ \rho_2 \in [0, 2], \ \rho_3 \in [1, 2], \ \rho_4 = 0,$
- $\alpha_1 = 0, \ \alpha_2 \in [0, \ 0.5], \ \alpha_3 \in [0, \ 1],$
- $\beta_1 = \beta_2 = \beta_3 = 0.$
- the potential at the tree level is bounded from below and has a global minimum with the predefined VEVs
- the VEVs satisfy: v ≈ 246 GeV and v<sub>R</sub> ≥ 104 GeV (to make W<sub>R</sub> sufficiently heavy and thus satisfy the LHC bounds)
- the physical spectrum contains a scalar with mass m<sub>h</sub> ≈ 125 GeV and the properties of the SM Higgs boson; all the other bosons (except for the six Goldstone bosons) have masses at the same order as  $v_R$

Nemevsek et al., Phys. Rev. D 97, 115018 (2018)





# Left-Right Effective Potential

• the full potential:

$$V_{\text{eff}}(r,T) = V_0(r) + V_{\text{CW}}(r) + V_{\text{FT}}(r,T) + V_{\text{D}}(r,T)$$

$$v_R \gg \kappa_1, \kappa_2 \longrightarrow V_0(r) = -\frac{1}{2}\mu_3^2 r^2 + \frac{1}{4}\rho_1 r^4 \text{ with } r := \text{Re } \delta_R^0 / \sqrt{2}$$

• Coleman-Weinberg:  $V_{\text{CW}}(r) = \frac{1}{64\pi^2} \bigg[ \sum_i m_i^4(r) \bigg( \log \frac{m_i^2(r)}{\mu^2} - \frac{3}{2} \bigg) + 6 m_{W_R}^4(r) \bigg( \log \frac{m_{W_R}^2(r)}{\mu^2} - \frac{5}{6} \bigg) \bigg] \bigg]$ 

$$+3m_{Z_R}^4(r)\left(\log\frac{m_{Z_R}^2(r)}{\mu^2}-\frac{5}{6}\right)-6m_{\nu_R}^4(r)\left(\log\frac{m_{\nu_R}^2(r)}{\mu^2}-\frac{3}{2}\right)\right]$$

1-loop thermal contribution:

$$V_{\rm FT}(r,T) = \frac{T^4}{2\pi^2} \left[ \sum_i J_{\rm B} \left( \frac{m_i^2(r)}{T^2} \right) + 6J_{\rm B} \left( \frac{m_{W_R}^2(r)}{T^2} \right) + 3J_{\rm B} \left( \frac{m_{Z_R}^2(r)}{T^2} \right) - 6J_{\rm F} \left( \frac{m_{\nu_R}^2(r)}{T^2} \right) \right]$$

• perturbative expansion fails at large T

→ resumed daisy graphs

$$V_{\rm D}(r,T) = -\frac{T}{12\pi} \sum_{i} \left[ M_i^3(r) - m_i^3(r) \right]$$



 $J_{\rm B/F}(r^2) = \int_0^\infty dx \, x^2 \log \left(1 \pm e^{\sqrt{x^2 + r^2}}\right)$ 

M.Quiros, arXiv:hep-ph/9901312 M.E.Carrington Phys. Rev. D45 (1992)





# Phase Transition – Dependence on $\rho_1$

- phase transition gets stronger when  $\rho_1$  decreases
- choosing ρ<sub>1</sub> to be small brings r sector near scale-invariant limit

$$\mu_3^2 = \rho_1 v_R^2 + \frac{1}{2} \alpha_1 \left( \kappa_1^2 + \kappa_2^2 \right) + 2\alpha_2 \kappa_1 \kappa_2 + \frac{1}{2} \alpha_3 \kappa_2^2$$

$$\rho_1 \ll 1 \qquad \Longrightarrow \qquad \mu_3 \ll v_R$$

 phase transitions in theories based on nearly conformal dynamics are typically strong and of first order

Konstandin, Servant arXiv:1104.4791



 $\delta_B^0$  [TeV]





# Stochastic Gravitational Wave Signal

Caprini et al. arXiv:1512.06239 Huber, Konstandin arXiv:0806.1828

 for all benchmark points we find the so-called "non-runaway" scenario ⇒ dominant production from sound waves and magnetohydrodynamic turbulence following bubble collisions

$$\Omega_{\rm GW} h^2 \simeq \Omega_{\rm sw} h^2 + \Omega_{\rm turb} h^2$$

• sound waves: 
$$\Omega_{\mathrm{sw}}h^2 = 2.65 \cdot 10^{-6} \left(\frac{H}{\beta}\right) \left(\frac{\kappa_v \, \alpha}{1+\alpha}\right)^2 \left(\frac{100}{g_*}\right)^{1/3} v_w \left(\frac{f}{f_{\mathrm{sw}}}\right)^3 \left(\frac{7}{4+3 \, (f/f_{\mathrm{sw}})^2}\right)^{7/2}$$

$$\kappa_v = \alpha \, (0.73+0.083\sqrt{\alpha}+\alpha)^{-1} \qquad \boxed{f \to 0 \Rightarrow \Omega_{\mathrm{sw}}h^2 \propto f^3} \qquad \boxed{f \to \infty \Rightarrow \Omega_{\mathrm{sw}}h^2 \propto f^{-4}}$$

magnetohydrodynamic turbulence:

$$\Omega_{\rm turb}h^2 = 3.35 \cdot 10^{-4} \left(\frac{H}{\beta}\right) \left(\frac{\kappa_{\rm turb} \, \alpha}{1+\alpha}\right)^{3/2} \left(\frac{100}{g_*}\right)^{1/3} v_w \left(\frac{f}{f_{\rm turb}}\right)^3 \frac{1}{\left[1+(f/f_{\rm turb})\right]^{11/3} (1+8\pi f/h_*)}$$

$$\boxed{f \to 0 \Rightarrow \Omega_{\rm turb}h^2 \propto f^3} \qquad \boxed{f \to \infty \Rightarrow \Omega_{\rm turb}h^2 \propto f^{-5/3}}$$



# Gravitational Wave Spectrum

- space-based detectors will be able to probe the model for small value of  $\rho_1$  (BP3, BP4)
- tree-level shallow potential is vulnerable to the CW correction: to this end, for BP3 and BP4 we fine-tune RH neutrino Yukawa coupling

Nemevsek et al., JHEP 1704 (2017) 114

GW strength does not depend on this tuning

|     | $\alpha$ | $\beta/H$ | $T_n$ [GeV]         | $T_c$ [GeV]       |
|-----|----------|-----------|---------------------|-------------------|
| BP1 | 0.0035   | 4007      | 5896                | 6216              |
| BP2 | 0.0034   | 3458      | $5.754\times10^{5}$ | $6.063\times10^5$ |
| BP3 | 0.46     | 626.2     | 608.3               | 9451              |
| BP4 | 0.18     | 1386      | 4484                | 7469              |



BP3 SNR: LISA (11.76), B-DECIGO (672.7) BP4 SNR: LISA O(10<sup>-4</sup>), B-DECIGO (16.69)

V. Brdar, LG, A. J. Helmboldt, X. Xu: JCAP 12 (2019)



### LRSM with Minimal Scalar Sector

• scalar sector: only a pair of doublets:  $\chi_L = \begin{pmatrix} \chi_L^+ \\ \chi_L^0 \end{pmatrix} \sim (1,2,1,+1), \qquad \chi_R = \begin{pmatrix} \chi_R^+ \\ \chi_R^0 \end{pmatrix} \sim (1,1,2,+1)$ 

$$V = -(\mu_L^2 \chi_L^{\dagger} \chi_L + \mu_R^2 \chi_R^{\dagger} \chi_R) + \frac{\lambda_L}{2} (\chi_L^{\dagger} \chi_L)^2 + \frac{\lambda_R}{2} (\chi_R^{\dagger} \chi_R)^2 + \lambda (\chi_L^{\dagger} \chi_L) (\chi_R^{\dagger} \chi_R)$$





LG, S. Jana, A. Kaladharan, S. Saad: JCAP 05 (2022)



### LRSM with Minimal Scalar Sector

• scalar sector: only a pair of doublets:  $\chi_L = \begin{pmatrix} \chi_L^+ \\ \chi_L^0 \end{pmatrix} \sim (1,2,1,+1), \qquad \chi_R = \begin{pmatrix} \chi_R^+ \\ \chi_R^0 \end{pmatrix} \sim (1,1,2,+1)$ 

$$V = -(\mu_L^2 \chi_L^{\dagger} \chi_L + \mu_R^2 \chi_R^{\dagger} \chi_R) + \frac{\lambda_L}{2} (\chi_L^{\dagger} \chi_L)^2 + \frac{\lambda_R}{2} (\chi_R^{\dagger} \chi_R)^2 + \lambda (\chi_L^{\dagger} \chi_L) (\chi_R^{\dagger} \chi_R)$$





LG, S. Jana, A. Kaladharan, S. Saad: JCAP 05 (2022)



# Summary

- gravitational wave signature from first-order phase transition associated to  $SU(2)_R \times U(1)_{B-I} \rightarrow U(1)_Y$  investigated
- although the phase transition is relatively weak for a generic point of the parameter space, testable gravitational wave signature arises in  $\rho_1 \ll O(1)$  "scale-invariant" limit
- gravitational wave searches will provide a test not only for the mechanism of LR symmetry breaking, but also for the generation of neutrino masses
- LR symmetric models therefore feature another powerful probe, which is complementary to collider searches, and which can lead to either novel constraints or remarkable discoveries



# Summary

- gravitational wave signature from first-order phase transition associated to  $SU(2)_R \times U(1)_{B-L} \rightarrow U(1)_Y$  investigated
- although the phase transition is relatively weak for a generic point of the parameter space, testable gravitational wave signature arises in  $\rho_1 \ll O(1)$  "scale-invariant" limit
- gravitational wave searches will provide a test not only for the mechanism of LR symmetry breaking, but also for the generation of neutrino masses
- LR symmetric models therefore feature another powerful probe, which is complementary to collider searches, and which can lead to either novel constraints or remarkable discoveries

Thank you for your attention!



### **Benchmark Points**

|                 | BP1       | BP2       | BP3      | BP4             |  |
|-----------------|-----------|-----------|----------|-----------------|--|
| $v/{ m GeV}$    | 246       | 246       | 246      | 246             |  |
| $v_R/{ m GeV}$  | $10^{4}$  | $10^{6}$  | $10^4$   | $5 \times 10^4$ |  |
| $\tan \beta$    | $10^{-3}$ | $10^{-3}$ | 0        | 0               |  |
| $\lambda_1$     | 0.13      | 0.13      | 0.13     | 0.13            |  |
| $\lambda_2$     | 0         | 0         | 0        | 0               |  |
| $\lambda_3$     | 1.2040    | 0.88814   | 0.6      | 0.6             |  |
| $\lambda_4$     | 0         | 0         | 0        | 0               |  |
| $ ho_1$         | 0.13414   | 0.11146   | 0.001    | 0.002           |  |
| $ ho_2$         | 1.2613    | 1.4109    | 0.900218 | 0.401126        |  |
| $ ho_3$         | 1.5140    | 1.5489    | 0.900215 | 0.401126        |  |
| $ ho_4$         | 0         | 0         | 0        | 0.040113        |  |
| $lpha_1$        | 0         | 0         | 0        | 0               |  |
| $lpha_2$        | 0.30246   | 0.15557   | 0        | 0               |  |
| $lpha_3$        | 0.10765   | 0.11185   | 1.14815  | 0.378138        |  |
| $\beta_{1,2,3}$ | 0         | 0         | 0        | 0               |  |
| g               | 0.65      | 0.65      | 0.65     | 0.65            |  |
| $g_{B-L}$       | 0.4324    | 0.4324    | 0.4324   | 0.4324          |  |
| $y_t$           | 0.95      | 0.95      | 0.95     | 0.95            |  |
| $y_M$           | 1         | 1         | 0.78595  | 0.52404         |  |





### **Gravitational Wave Detectors**

- ground-based observatories: LIGO and Virgo (phases O2, O3 and "Design")
- space-based detectors: LISA, Big Bang Observer, DECIGO (two stages: B-DECIGO) and FP-DECIGO)
- $SNR = \sqrt{2t_{obs}} \int_{f}^{f_{max}} df \left[ \frac{\Omega_{GW}(f) h^2}{\Omega_{noise}(f) h^2} \right]^2$  we define signal-to-noise ratio (SNR): Thrane, Romano: arXiv: 1310.5300
- $\Omega_{\text{noise}}h^2$  is effective strain noise power spectral density (different from sensitivity curves)
- for all space-based measurements t<sub>obs</sub> = 5 years assumed