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Introduction
l Many GW events from compact binary coalescence (CBC) comprised of 

black holes and neutron stars, while not from supernovae yet.

l Investigating temporal changes in the frequency and amplitude of GWs 
is important for studying the physics of GW sources.
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l There are several different ways of T-F analysis
Ø the short-time Fourier transform (STFT)
Ø the wavelet analysis 
Ø Wigner distribution function (WDF) 

and its modifications
Ø Non-harmonic analysis(NHA)

• The resolutions in time and frequency are restricted 
by “the uncertainty principle” in methods based on
Fourier transform.

Ø Hilbert-Huang transform (HHT) proposed by Norden E. Huang (1996)
• HHT is not affected by the uncertainty principle of FT.

• It is adaptive approach to time series analysis.

• It consists of

« an empirical mode decomposition (EMD),
« the Hilbert spectral analysis (HSA).
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Demodulation
l If a signal h(t) can be divided into modulator 𝑎 𝑡 and carrier 𝑐(𝑡) or cos 𝜙(𝑡) :

Ø 𝑎(𝑡): the time-varying amplitude or the instantaneous amplitude (IA)
Ø 𝜙(𝑡): the instantaneous phase
Ø the instantaneous frequency (IF)

l The decomposition is not unique.
For a complex signal, there is a reasonable way to define the IA and IF.

l 𝐹(𝑡): a complex signal 

Ø

Ø
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Hilbert Spectral Analysis (HSA)
l How to find the complex signal F(t) from a real signal h(t).
l If h(t) is the real part on the real axis of a holomorphic function F(z) which 

approaches zero fast enough for |𝑧| → ∞, its imaginary part 𝑣(𝑡) is uniquely given 
by the Hilbert transform of h(t).

l Hilbert Transform

P : the Cauchy's principal value,     * : the convolution
l The imaginary part 𝑣(𝑡) and therefore IF and IA are obtained as long as the 

integral converges.
l The IF is not always physically meaningful.

Ø a cosine wave of of constant amplitude and frequency
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Decomposition of Signals
l To overcome this issue, we need to decompose signal h(t) into some waves ck(t) 

called intrinsic mode functions (IMFs) and the non-wave part r(t);

ck(t): IMF,     r(t) : the trend (non-wave part)

l Each IMF must satisfy the following conditions 
to obtain meaningful IF and IA using the HT:
Ø oscillating around zero;

in the whole data set, |# of extrema – # of zeros| = 0 or 1
Ø locally symmetric wrt zero; 

the mean value of the upper and lower envelopes defined by the local maxima 
and minima = 0

l Empirical Mode Decomposition (EMD):
a sift procedure for decomposing a signal into IMFs.
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Empirical Mode Decomposition (EMD)
l Set h1(t) = h(t) (the original signal)
l for i = 1 to imax

Ø hi1(t) = hi(t)
Ø for k = 1 to kmax

1) Mark the local maxima and minima of hik(t).
2) Interpolate the maxima and minima by cubic splines

the upper Uik(t) and lower Lik(t) envelopes.
3) mik(t) = (Uik(t) + Lik(t))/2.
4) hi,k+1(t) = hik(t) - mik(t).

Ø Exit if a certain stoppage criterion is satisfied.
Ø IMF i is obtained; ci(t) = hik(t) .
Ø Set hi+1(t) = hi(t) - ci(t).

l Set the final residual (the trend) r(t) = himax+1(t).
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Mark the maxima of the original signal h(t).

Calculate the local mean curve m1(t) = (U1(t)+L1(t))/2.Follow the same procedure to obtain the lower envelope L1(t).

Interpolate the maxima to obtain the upper envelope U1(t) 
usually using cubic spline.
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Subtract the mean m1(t) from the original signal h(t)          to obtain the residual h12(t) = h(t) - m1(t).

Repeat the procedure to obtain m2(t) = (U2(t)+L2(t))/2          and subtract m2(t) from h12(t) to obtain h13(t). 
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Repeat the procedure until a stoppage criterion is 
satisfied to adopt h1k(t) as c1(t) (IMF1).

stoppage criterion: mk(t) is sufficiently small

Subtract IMF1 c1(t) from the original signal h(t)

IMF1

and apply the sifting process on the residual again 
to obtain IMF2, IMF3 .... 
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The sifting is completed when 
the residual has at most one 
extremum or is smaller than the 
predetermined value.

the original signal h(t)

IMF1 c1(t)

IMF2 c2(t)

IMF3 c3(t)

IMF4 c4(t)

residual (trend) r(t)

Finally, the original signal is 
decomposed in terms of IMFs.
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Spectrogram vs HHT map

STFT-based spectrogram HHT map (Time-Frequency map)

l Both of a spectrogram and  an HHT map are graph with two geometric dimension.
l A spectrogram, in principle, fills the entire area of 2D graph.
l An HHT map consists of several curves representing IFs  𝑓!(𝑡) with color gradients 

representing IAs 𝑎!(𝑡) of IMFs. 



l The original EMD is sensitive to noise.
l In the original form of the EMD, mode mixing and/or splitting frequently appears.

Ø mode mixing / mode splitting
• A single IMF consists of signals of widely disparate scale.
• Signals of a similar scale reside in different IMF components.

➠ serious aliasing in the time-frequency distribution
➠ not physically meaningful IMF

l Mode mixing often occurs if envelopes 
are close together at height away from 
zero.

Problems with EMD
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Ensemble EMD
l Solution: Ensemble EMD (EEMD)

Ø Proposed by Huang et al. (2009)
Ø Inspired by the study of white noise using EMD

l Algorithm:
1) Add white noise to the original data 

to form a "trial",                               .
2) Perform EMD on each hi(t) with different ni(t).
3) For each IMF, take ensemble mean among 

the trials ( i = 1, 2, … ) to obtain the final answer.
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Completeness of decomposition
l The original EMD preserves completeness;

the sum of the IMFs and residual recovers the original signal.

l In the EEMD, the residual noise destroys the completeness,

while the residue noise could be reduced with large enough ensemble.
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Complementary EEMD (CEEMD)
To resolve the problem, J.-R. Yeh and J.-S. Shieh (2010)
proposed Complementary EEMD (CEEMD).
l If trials with noise −𝑛!(𝑡) ≡ 𝑛"!(𝑡) are added to the ensemble, 

then the completeness will be recovered.
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l A cubic spline (cspline) is usually used to interpolate the local extrema 
to find the upper and lower envelopes.

l Extrapolation is needed between the first (last) extremum and the end of data.

near both ends of data

20

the first maximum the last maximum

𝑡!"#𝑡!$%
𝑡!"#

how to draw a curve 
to 𝑡"#$ ?



near both ends of data
l Extrapolation may give an extremely large value at the edge.

l It gives an erroneous value of the mean of upper and lower envelope 
due to loss of digits.

l To suppress this issue, we add an extra point on the outside of the edge in 
calculating the coefficients of cspline. It works well in most cases.
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near both ends of data
1. to add knots assuming reflection 

symmetry wrt 𝑡#$% and 𝑡#&'

2. to add an extra knot on the signal at 𝑡#$% and 𝑡#&' both for the upper and lower 
envelopes

Ø Overshoot in cspline sometimes occurs with both cases.
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Akima spline
l Cubic spline often causes pseudo-oscillations and overshoots where there are 

jumps or the second derivative changes markedly.
l Akima spline generates natural interpolated curves like handwriting, by 

abandoning the continuity of the second derivative.
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Akima spline vs cubic spline
l Akima spline tends to suppress overshoots near the boundary of time 

and mode mixing. [ I. Yoda et al., Prog. Theor. Exp. Phys. in press (2023) ]
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Parameters to be Predetermined
l To perform the EMD or the EEMD (CEEMD),

we must predetermine
Ø stoppage criterion:

• the value of ε

Ø the magnitude of noise 𝜎( to be added for EEMD

• The parameter 𝜎( is given as a value relative to the rms of input data.

Ø the size of the ensemble for EEMD, which depends on 𝜎(.

Ø how to calculate envelopes near the edge of data
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Analysis of Gravitational Waves in a Core-collapse supernova
M. Takeda, Y. Hiranuma, et al., Phys. Rev. D104, 084063 (2021)

l Numerical simulation of core collapse supernova (Kuroda, et al. 2016) suggests that strong GWs 
are emitted from g-mode oscillation in the core and standing accretion shock instability (SASI).

l The SASI mode as well as g-mode can be clearly detected using the HHT.
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Analysis of Gravitational Waves in a Core-collapse supernova

l Short-time oscillations in the frequency 𝑓(𝑡) are considered to be due to numerical errors.
Ø The frequency is obtained as the first derivative of the phase.

l Assuming it is true,
the short-time oscillations can be eliminated by applying  a lowpass filter to 𝑓(𝑡),
since the HHT gives 𝑓(𝑡) (the instantaneous frequency) as a function of time.

27

(cutoff freq. = 100 Hz)



GWs from binary neutron star merger 

l Numerical relativity revealed that GWs in the post-merger phase depend greatly on EOS of the 
NS matter (Sekiguchi et al, 2011). 

l The structure of the signal clearly appear in HHT map (T-F map). 

l Using the original EEMD, we can distinguish the EOS from the evolution of IF 
in the post-merger phase up to ～ 20 Mpc with Advanced-LIGO.

l Using the Akima spline, it is extended to ～ 45 Mpc.
28
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Summary and future work
l We apply the HHT to analysis of GWs with some improvement of EEMD, 

including substituting Akima spline interpolation for the cubic spline 
and careful treatment near both ends of time series data, etc.

l It is easy to parallelize the code using MPI to reduce computation time.
l Various kinds of future improvement have been proposed.

We will investigate whether they are useful for analysis of GWs with real 
observed data.
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