

Geant4 simulations of sub-keV electron energy loss in CaWO₄ and Al₂O₃ by ELOISE

Holger Kluck HEPHY · holger.kluck@oeaw.ac.at

TAUP2023, Vienna, 29 August 2023

- What is ELOISE?
 - validate Geant4 simulation for CaWO₄
 and Al₂O₃ at sub-keV energies
 focus of his talk: energy loss by electron
 ionisation
- The reference data
 - Electron Energy Loss Spectroscopy of CaWO₄ and Al₂O₃
- The comparison
 - Geant4 10.6.3 "out of the box"
- Outlook & Summary

What is ELOISE?

Reliable Background Simulation at Sub-keV Energies (for CaWO₄ and Al₂O₃)

Der Wissenschaftsfonds.

ELOISE is founded by the Austrian science fund (FWF) under grant number P34778-N

[HK, SciPost Phys. Proc. 12 (2023) 064]

ELOISE: Motivation

- CaWO₄ and Al₂O₃ are prominent targets for rare event searches:
 - CRESST searching for Dark Matter induced nuclear recoils
 - NUCLEUS searching for Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)
- In both cases the signal is rare compared to the background and measured down to O(10 eV)
 - → a reliable background model at sub-keV is crucial

ELOISE: Energy Scale

Table 1: The maximal recoil energies caused by CEvNS with a neutrino of 2 MeV kinetic energy ($E_{\rm rec,\nu}$) and by elastic scattering with a 2 GeV/c²-DM particle with a velocity of 220 m s⁻¹ ($E_{\rm rec,DM}$) and the minimal displacement energies ($E_{\rm dis}$) for CaWO₄ [8] and Al₂O₃ in case of Al [9].

	₈ O	₁₃ Al	₂₀ Ca	₇₄ W
$E_{\rm rec,DM}/{\rm eV}$	106.4	69.2	48.6	11.5
$E_{\mathrm{rec},\nu}/\mathrm{eV}$	499.9	296.5	199.5	43.5
$E_{\rm dis}/{\rm eV}$	20	47.5	24	196

[HK, SciPost Phys. Proc. 12 (2023) 064]

ELOISE: Energy Scale

Table 1: The maximal recoil energies caused by CEvNS with a neutrino of 2 MeV kinetic energy ($E_{rec,\nu}$) and by elastic scattering with a 2 GeV/c²-DM particle with a velocity of 220 m s⁻¹ ($E_{rec,DM}$) and the minimal displacement energies (E_{dis}) for CaWO₄ [8] and Al₂O₃ in case of Al [9].

	₈ O	₁₃ Al	₂₀ Ca	₇₄ W
$E_{\rm rec,DM}/{\rm eV}$	106.4	69.2	48.6	11.5
$E_{\mathrm{rec},\nu}/\mathrm{eV}$	499.9	296.5	199.5	43.5
E _{dis} /eV	20	47.5	24	196

[HK, SciPost Phys. Proc. 12 (2023) 064]

 $E_{\rm rec, \nu}/eV$

 $E_{\rm dis}/{\rm eV}$

499.9

20

199.5

24

43.5

196

[HK, SciPost Phys. Proc. 12 (2023) 064]

296.5

47.5

Reference Data: Electron Energy Loss Spectroscopy of CaWO₄ and Al₂O₃

Reference Data: Requirements

- Measurement of reference data has to be reproducible in simulation with as few as possible systematic uncertainties
 → keep it simple
- Electron Energy Loss Spectroscopy (EELS) on thin samples
 - Simple geometry:
 "free floating" cuboid of CaWO₄/Al₂O₃ in vacuum
 - Simple interactions:
 only single e⁻ interactions

Reference Data: EELS

- CaWO₄, Al₂O₃ samples provided by Nucleus
- Only single e⁻ interactions
 → thin target (~105 nm)

- Well established method: Electron Energy Loss Spectroscopy (EELS)
 - \rightarrow monochromatic e⁻ (E_0 =200 keV)
 - \rightarrow collection angle θ = 28 mrad
 - \rightarrow energy loss: E_0 -E'

EELS of CaWO₄ and Al₂O₃

EELS of CaWO₄ and Al₂O₃ - Collective Excitations

EELS of $CaWO_4$ and Al_2O_3 — Ionisation on Outer Shell e

EELS of $CaWO_4$ and Al_2O_3 — Ionisation on Core Shell e

EELS of CaWO₄ and Al₂O₃ — Diverse Spectral Features

EELS of CaWO₄ and Al₂O₃ — Complex Sub-keV Spectra

- Work in progress!
- Use Geant4 10.6.3 (called from the ImpCRESST simulation code [1]), applicability limit ~ 250 eV*
- Here: physics not tuned / out of the box G4EmStandardPhysics_option4**

- * For Livermore models [Livermore low-energy electromagnetic models]
- ** "G4EmStandardPhysics_option4, containing the most accurate models from the Standard and Low Energy Electromagnetic physics working groups" [Geant4, Book For Application Developers, rev7.1]

- Work in progress!
- Use Geant4 10.6.3 (called from the ImpCRESST simulation code), applicability limit ~ 250 eV
- Here: physics not tuned / out of the box G4EmStandardPhysics_option4
- Shoot e⁻ (E₀=200keV) through 105 nm of CaWO₄ / Al₂O₃
 - → Record energy loss E_0 -E' if $\theta \le 28$ mrad

- Work in progress!
- Comparing empirical PDFs

- Work in progress!
- Comparing empirical PDFs
- S/B too high in Geant4

- Work in progress!
- Comparing empirical PDFs
- S/B too high in Geant4
 - → Multiple interactions visible

- Work in progress!
- Comparing empirical PDFs
- S/B too high in Geant4
- Spectral features in low energy lossranges are missing Expected as it is below Geant4's applicability limit of 250 eV

27

- Work in progress!
- Comparing empirical PDFs
- S/B too high in Geant4
- Spectral features in low energy lossranges are missing
- Shape of ionisation edges in core-loss range differ, onset differs by up to O(100 eV)

- Work in progress!
- Comparing empirical PDFs
- S/B too high in Geant4
- Spectral features in low energy lossranges are missing
- Shape of ionisation edges in core-loss range differ, onset differs by up to O(100 eV)

[S. Banik (CRESST Collab.), TAUP2023]

→ Relevant for high accuracy simulation at sub-keV e.g. of CRESST's ⁵⁵Fe calibration sources

Outlook: Tuning Geant4

- Work in progress!
- Comparing empirical PDFs
- S/B too high in Geant4
- Spectral features in low energy lossranges are missing
- Shape of ionisation edges in core-loss range differ, onset differs by up to O(100 eV)

Scattering angle

→ different (elastic) scattering models

Energy loss

→ different ionisation models

Outlook: Tuning Geant4

G4EmStandardPhysics_option4 uses:

- Penelope model for ionisation
 Generalised Oscillation Strength-model fitted to data
- Goudsmit and Saunderson model for elastic scattering "Condensed" multiple scatterings into one single step

Alternative:

Livermore model
 Data-driven, based on EEDL library

Coulomb single-scattering model

 Studying possibility to use EELS data to develope a data-driven ionisation model for ionisation in the low loss-energy range

Summary and Outlook

Summary

- Rare event searches like CRESST and NUCLEUS have detection threshold of (10 eV)
 → reliable background simulations at sub-keV are crucial
- Use EELS of Al₂O₃ / CaWO₄ as reference data for validation of Geant4's ionisation model
 - First Electron Energy Loss spectrum of CaWO₄
 - Rich spectral features on the sub-keV scale → challenging for simulations
- Comparison with Geant4 10.6.3 "out of the box" shows qualitative differences:
 - Low loss features are missing, as expected
 - Shapes of core-loss peaks differ, position is shifted by up to O(100 eV)

Outlook

- Tune Geant4: study alternative physics models and settings
- Extend Geant4: study possibility to develop a data-driven model for the low loss region

Local organizing comittee: Valentyna Mokina • Holger Kluck Jens Burkhart • Brigitte De Monte

Discuss Geant4 simulations for rare event searches at

VIEWS24

Vienna Workshop on Simulations 2024

22-27 April 2024 • Vienna, Austria

https://indico.cern.ch/e/VIEWS24