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Gravitational waves

Fig. 1: Example of a chirp event, specifically the first one ever observed GW150914.
Phys. Rev. Lett. 116, 061102

Gravitational waves (GWs) are a consequence of General Relativity.
They exist in multiple forms:
• Chirps from massive object mergers
• Bursts
• Continuous waves (see talk Luca)
• Stochastic gravitational-wave background (SGWB)

In our analysis, we focus on chirps and the 
results from the search for the SGWB.

Fig. 2: The 
computed SGWB 
based on the chirps 
coming from alle 
events discovered in 
the previous 
observing runs of 
the LIGO-Virgo-
KAGRA (LVK) 
collaboration.
Phys. Rev. X 13, 
011048

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.13.011048
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.13.011048
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Network of detectors

Fig. 3: The optical layout of Advanced Virgo. https://www.virgo-
gw.eu/science/detector/optical-layout/

Global network of interferometers searching for GWs.
Laser destructive interference searching for signals.

Future: LISA, Einstein Telescope, Cosmic Explorer

Fig. 4: The global network with all current interferometers, not next generation. 
https://www.ligo.caltech.edu/image/ligo20160211c

https://www.virgo-gw.eu/science/detector/optical-layout/
https://www.virgo-gw.eu/science/detector/optical-layout/
https://www.ligo.caltech.edu/image/ligo20160211c
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Chirps

Fig. 6: Example of reconstructing the first ever chirp GW150914.
Phys. Rev. Lett. 116, 061102

Chirps are transient signals of massive object mergers.
Main channels for chirps are:
• Binary black hole (BBH) mergers
• Binary neutron star (BNS) mergers
• Neutron star - black hole (NSBH) mergers

Fig. 5: This graphic shows all the masses for all GW events so far observed in 
LVK. https://www.ligo.caltech.edu/LA/image/ligo20211107a

Most detected chirps are from BBH mergers. 
These have higher masses than EM-observed objects.

Chirps are observed at low to moderate redshift.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102
https://www.ligo.caltech.edu/LA/image/ligo20211107a
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Stochastic gravitational-wave background
The SGWB is a superposition of weak GW sources.
It can exist in many forms from two categories:
• Astrophysical background
• Cosmological background

Fig. 7: Overview of 
potential 
background signals 
across the 
frequency 
spectrum. 
Showing both 
sensitivity curves 
from experiments 
as dotted lines and 
expected 
background 
magnitudes as solid 
lines. 
Galaxies 2022, 
10(1), 34

https://www.mdpi.com/2075-4434/10/1/34
https://www.mdpi.com/2075-4434/10/1/34
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Stochastic gravitational-wave background
The SGWB is a superposition of weak GW sources.
It can exist in many forms from two categories:
• Astrophysical background
• Cosmological background

• (Un)resolvable chirps
• Core collapse supernovae
• Rotating neutron stars

Fig. 7: Overview of 
potential 
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https://www.mdpi.com/2075-4434/10/1/34
https://www.mdpi.com/2075-4434/10/1/34
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Stochastic gravitational-wave background
The SGWB is a superposition of weak GW sources.
It can exist in many forms from two categories:
• Astrophysical background
• Cosmological background

• (Un)resolvable chirps
• Core collapse supernovae
• Rotating neutron stars

• Primordial black holes
• Cosmic strings
• Inflation
• Phase transitions
• …

Fig. 7: Overview of 
potential 
background signals 
across the 
frequency 
spectrum. 
Showing both 
sensitivity curves 
from experiments 
as dotted lines and 
expected 
background 
magnitudes as solid 
lines. 
Galaxies 2022, 
10(1), 34

Since we are only interested in BBH events, 
we only look at the astrophysical 
background from BBHs.

The SGWB is characterized by energy density

https://www.mdpi.com/2075-4434/10/1/34
https://www.mdpi.com/2075-4434/10/1/34
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Astrophysical background

Fig. 8: The expected contribution of BBHs and BNS to the astrophysical background based on O1-O3 merger events. 
Shown together with the sensitivity curves for O2, O3 and future observing runs. Phys. Rev. D 104, 022004 

The astrophysical background can be estimated 
from all observed events.

We estimate that we would observe the 
background at design A+. 

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.022004
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Isotropic search for the SGWB
Optimal estimator is given by

Cross-correlation 
between detector I 
and J

Why?
SGWB signal is weak
and similar to noise
-> we need to
combine detector 
signals to estimate.

BUT
Assumptions: 
uncorrelated noise,
gaussian, stationary 
and isotropic.
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Isotropic search for the SGWB
Optimal estimator is given by

Overlap reduction 
function for detector I 
and detector J:
Accounting for 
differences of 
detectors in location 
and orientation. 

Cross-correlation 
between detector I 
and J

Why?
SGWB signal is weak
and similar to noise
-> we need to
combine detector 
signals to estimate.

BUT
Assumptions: 
uncorrelated noise,
gaussian, stationary 
and isotropic.

Fig. 9: Cross-correlation spectra in O3. LVK, Phys. Rev. D 104, 022004

We assume power-law form

To get:

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.022004
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Inferring the variation in redshift of the 
binary black hole merger rate 

combining gravitational-wave searches
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Merger rate estimation

We split the merger rate ℛ(𝑧) of BBHs into three components:
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Merger rate estimation

We split the merger rate ℛ(𝑧) of BBHs into three components:

Power-law plus peak

Novelty: 

The most common model for the 
mass distribution of the heaviest 
black hole is the power-law plus 
peak model:

We add a redshift variation in the 
power-lax index of the distribution.



Inferring the binary black hole merger rate in redshift, TAUP 2023 M. Lalleman 14

Merger rate estimation
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Merger rate estimation

We split the merger rate ℛ(𝑧) of BBHs into three components:

Power-law plus peak

Power-law

Novelty: 

𝑚1 > 𝑚2

In previous studies, the joint chirps and 
stochastic background analysis never 
investigated the variation in redshift of 
mass distribution.

We add these two components 
together in a novel way.

The most common model for the 
mass distribution of the heaviest 
black hole is the power-law plus 
peak model:

The redshift distribution of 
the merger rate follows a 
broken power-law:

We add a redshift variation in the 
power-lax index of the distribution.



Inferring the binary black hole merger rate in redshift, TAUP 2023 M. Lalleman 16

Power-law plus peak

Broken power-lawMerger rate estimation

Fig. 10: Toy example of our novel power-law plus peak distribution. Fig. 11: Toy example of our broken power-law redshift distribution.



Likelihood

CHIRPS SGWB
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Inference

Optimal estimatorBBH merger event data

We are looking for the
parameters representing the 
components of the merger rate:

Power-law plus 
peak model

Broken power-
law model

~ ×

• κ0
• Τ𝑑κ

𝑑𝑧

• α
• 𝑧𝑝

Posterior Prior
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O3 Results BBH only analysis

BBH + GWB analysis

Fig. 12: Parameter Estimation (PE) results for O3 analysis, with and without GWB included.

Fig. 13: The computed 𝓡(𝒛) at fixed 𝑚1 = 20𝑀⊙ for all samples of the O3 analysis. 
Once in red for the analysis where the GWB is included and once in black where only 
the direct BBH detections are considered.

Even without observing SGWB, we can learn about 
the merger rate and its variation in redshift.
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Forecasting O5
We inject an O5-like GWB in data.
It is consistent with O3 BBH events.

BBH only analysis

BBH + GWB analysis

Fig. 15: The computed 𝓡(𝒛) at fixed 𝑚1 = 20𝑀⊙ for a detected background in O5. 
Once in red for the analysis where the GWB is included and once in black where only 
the direct BBH detections are considered.

Observing the SGWB adds information!
Peak redshift is different.

Fig. 14: PE results 
of the peak 
redshift for O5 
considering a 
detected 
background. In 
red, we show the 
BBH+GWB 
analysis and in 
red, the BBH only 
analysis. The 
background 
detection adds 
information into 
the mix.
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O5 Results BBH only analysis

BBH + GWB analysis

Fig. 16: PE results for O5 
analysis using a 
detectable GWB, with 
and without GWB 
included in the analysis.

We highlight the 
posterior on the variation 
in the power-law of the 
power-law plus peak 
model, characterizing the 
variation in redshift.

PE seems to give indication for variation in redshift.
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Conclusion and outlook

Adding SGWB data improves knowledge on merger rate distribution.
We can constrain variation in redshift when considering mass distribution.
A possible detection of the SGWB gives improved constraints.
It can also give indication of the variation in redshift.

In future we can:

• Vary different parameters, investigating their evolution with redshift and how they 
might influence the merger rate evolution, e.g., varying peak redshift. 

• Investigate the effect of variation with redshift on possible formation channels of BBHs.
• Perform again in O4 after adding more chirps and improved stochastic upper limits. 
• Extend the analysis to binary neutron star mergers.



22



Inferring the binary black hole merger rate in redshift, TAUP 2023 M. Lalleman 23

Back-up slides
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Forecasting O5

O3
O5

We compute the energy density of the background 
𝜴𝑮𝑾 𝒇 for all realized samples of O3.

Each computed background is shown on Fig. A1 as a blue line. 

One sample is taken and will serve as a toy model for the 
detected SGWB in O5. 

We inject it our analysis and perform PE just as in O3 analysis.

The sensitivity curves of O3 and O5 [11] are 
represented by the red lines. One sample which 
can be detected in O5 is chosen and injected 
into our analysis. 

Fig. A1: The energy density of the background is computed for all 
samples in our analysis using the stochastic upper limits and direct BBH 
detections from O3. 
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More PE for O5

Fig. A2: PE results for O5 
analysis using a 
detectable GWB without 
GWB included in the 
analysis.

Fig. A3: PE results for O5 
analysis using a 
detectable GWB, with 
GWB included in the 
analysis.



Inferring the binary black hole merger rate in redshift, TAUP 2023 M. Lalleman 26

More PE for O5

Fig. A4: PE results for O5 
analysis using a 
detectable GWB, with 
and without GWB 
included in the analysis.
Now with 2-D plots more 
clear.
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Another way to look at it for O5

Fig. A5: Figure of ℛ 𝑚1

at z = 0.2 for all samples 
in the O5 analysis.
Once again, in red, we 
have the BBH+GWB 
analysis and in red the
BBH only analysis.

We can observe a slight
difference in the power-
law index, even at these 
low redshifts.
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More PE for O3

Fig. A6: PE results for O3 
analysis (so no background 
observed), with GWB 
included in the analysis.

We also show all other 
possible hyperparameters 
here. Second index of 
broken power-law β gives 
back almost the prior.
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Power-law integrated sensitivity curves
Idea from Phys. Rev. D 88, 124032

• Take network of detectors and compute effective energy density via 
effective strain power spectral density

• Assume an observation time T
• For set of power-law indices and a reference frequency, calculate value of 

amplitude such that SNR is equal to a fixed value

• For each pair of (index, amplitude), plot

Ω𝐺𝑊 𝑓 = Ω𝛽(
𝑓

𝑓𝑟𝑒𝑓
)𝛽

• The envelope of these curves is the PLIS 
for two (or more) detectors, given by
Ω𝑃𝐿 𝑓 = 𝑚𝑎𝑥𝛽[Ω𝛽(𝑓/𝑓𝑟𝑒𝑓)^(𝛽)]

Fig. A7: The figure 
shows the making of 
the PLIS. On the left, 
one can see the black 
curves, which are the 
index, amplitude pairs 
plotted and in blue 
the computed PLIS. 
Phys. Rev. D 88, 
124032

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.124032
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.124032
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.124032


Inferring the binary black hole merger rate in redshift, TAUP 2023 M. Lalleman 30

Overlap reduction function There is a tool exploiting this 
overlap reduction function for 
SGWB detection: Geodesy:
- T. A. Callister et al., 2018 
ApJL 869 L28
- Janssens et al., Phys. Rev. D 
105, 082001

Fig. A8: Graph showing all 
overlap reduction functions of 
the LVK network between H 
and the other detectors. It 
becomes quite small 
immediately for higher 
frequencies. Galaxies 2022, 
10(1), 34.

https://iopscience.iop.org/article/10.3847/2041-8213/aaf3a5
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.082001
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.082001
https://www.mdpi.com/2075-4434/10/1/34
https://www.mdpi.com/2075-4434/10/1/34
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Likelihood
We write down our likelihood as

Optimal estimator

BBH merger event data

We are interested in the
parameters Λ representing 
the components of the 
merger rate:

• κ
• Τ𝑑κ

𝑑𝑧

• α
• 𝑧𝑝
• ℛ0: reference merger

rate

Power-law plus 
peak model

Broken power-
law model
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The stochastic gravitational-wave background 

Fig. A9: Overview of 
potential background 
signals across the 
frequency spectrum. 
Showing both 
sensitivity curves from 
experiments as dotted 
lines and expected 
background 
magnitudes as solid 
lines. 
Galaxies 2022, 10(1), 
34

https://www.mdpi.com/2075-4434/10/1/34
https://www.mdpi.com/2075-4434/10/1/34
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The stochastic gravitational-wave background: PTAs 

LVK

PTAs

Fig. A10: Overview of 
potential background 
signals across the 
frequency spectrum. 
Showing both 
sensitivity curves from 
experiments as dotted 
lines and expected 
background 
magnitudes as solid 
lines.
Galaxies 2022, 10(1), 
34

https://www.mdpi.com/2075-4434/10/1/34
https://www.mdpi.com/2075-4434/10/1/34
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