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What is the Fermi GeV excess ?
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We all agree: There is an excess of GeV gamma rays (GCE) toward the Galactic centre measured 
by Fermi-LAT above known astrophysical backgrounds.
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Fermi GeV excess

Where we do not agree:
1. What is the preferred spatial morphology of the excess?
2. What is causing the Fermi GeV excess?

 [Fermi collab. ApJ 840 (2017) 1]
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Figure 15. Spectrum of the GC excess. Points are derived using the Sample Model described in Section 2.2.

The systematic uncertainty band is derived from taking the envelope of the GC excess fluxes for di↵erent

analysis configurations, and di↵erent models of di↵use gamma-ray emission and sources in Sections from 3

to 6. Our results are compared to previous determinations of the GC excess spectrum from the literature.

Note, that the area of integration varies in di↵erent cases. In this analysis we mask some bright PS, which

e↵ectively masks the GC within about 2� radius. Gordon & Maćıas (2013) have a 7� ⇥ 7� square around

the GC. The flux from Calore et al. (2015) is obtained by taking the intensity in Figure 14 and multiplying

by the area of the ROI (2� < |b| < 20� and |`| < 20�) in their analysis. The ROI in Ajello et al. (2016) is

a 15� ⇥ 15� square around the GC. The two cases that we consider here correspond to the model with the

CR sources traced by the distribution of pulsars (Yusifov & Küçük 2004) where either only overall intensity

(“fit intens”) or both intensity and index (“fit index”) for the di↵use components spectra are fit to the data

(cf. Figure 13 of Ajello et al. 2016).

and modeling of PS. The excess remains significant in all cases in the energy range from 1 GeV to a

few GeV, although its flux is found to vary by a factor of & 3 owing to uncertainties in the modeling

of IC emission, additional CR sources near the GC, and a contribution of the low-latitude emission

from the Fermi bubbles.

Figure 15 also shows that our determination of the GC excess spectrum is generally consistent with

previous determinations in the literature, but our assessment of systematic uncertainties is generally

larger than that reported in other studies. We note that the ROIs used to determine the flux and

the flux profiles assumed are di↵erent for di↵erent analyses, thus the curves cannot be compared

quantitatively. The main purpose of the figure is to show that there is a qualitative agreement.

8. MORPHOLOGY OF THE GALACTIC CENTER EXCESS

Characterizing the morphology of the GC excess is important to understand its nature. In partic-

ular, spherical symmetry is expected for DM annihilation as well as, to a good approximation, for a

population of MSPs in the bulge of the Milky Way (e.g., Brandt & Kocsis 2015) or young pulsars

produced as a result of star formation near the GC (O’Leary et al. 2015), while a continuation of
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The excess is tantalising since it coincides well with the expectations for the sought-after signal of 
thermal dark matter pair-annihilating in the Galactic centre. However, unresolved populations 
of gamma-ray sources are a strong contender! [See D. Hooper, arXiv:2209.14370 for a different view.]
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Figure II.12: Schematic summary of DM search strategies based on the interactions of DM
with itself and SM particles. The circular shaded area is a placeholder for new physics
couplings and interactions which depend on a particular model. While the depicted situation
is only valid for thermally produced DM like WIMPs, some of the search strategies may be
nonetheless applicable to particle DM candidates with non-thermal production mechanisms
like axions and sterile neutrinos.

A schematic overview of how to turn these interactions into DM detection
strategies is shown in Fig. II.12. There are three main avenues:

• Direct detection: Based on interactions of the kind c + SM ! c + SM
describing two-body scattering processes. If DM existed, we should be
able to directly observe such scattering events with ordinary matter in
laboratory experiments.

• Indirect detection: Based on interactions of the kind c + c ! SM +
SM which refer to DM self-annihilation into SM final states. The idea
is to look for these SM final states among the plethora of cosmic rays
penetrating the Earth’s atmosphere. Depending on the exact DM model,
DM decays into SM particles also provide signals suitable for indirect
detection techniques.

• Collider searches: Based on interactions of the kind SM + SM ! c + c
encompassing all DM pair-production processes due to the interaction
of SM particles. Such interactions should occur at high-energy particle
colliders like the LHC and manifest themselves as missing momentum
or energy in the detected final states.

In this section, we provide a short summary of the overall scope of these three
DM search avenues highlighting current results, disputable detection claims
and constraints on the properties and nature of mainly thermally produced
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Thermal dark matter Unresolved Galactic source population 
(here: millisecond pulsars [MSPs])

[credit: NASA]

supported by (incomplete collection):
[R. Bartels et al., PRL 116 (2016) 5];  
[R. Bartels et al., Nature Astron. 2 (2018) 10]; 
[O. Macias et al., JCAP 09 (2019) 042];
[F. Calore et al., PRL 127 (2021) 16];
[M. Pohl et al., ApJ 929 (2022) 2]

VS.

supported by (incomplete collection): 
[Fermi collab. ApJ 840 (2017) 1];
[R. K. Leane and T. R. Slatyer, PRL 123 (2019) 24]; 
[M. di Mauro, PRD 103 (2021) 6]; [I. Cholis et al., PRD 105 (2022) 10];
[S. D. McDermott et al., arXiv:2209.00006]

Our question: How robust are those interpretations given the caveat that the excess is above known 
astrophysical background? Does the background model uncertainty impact the final results?
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A decisive feature of the GeV excess is its photon clustering behaviour, spectrally they can be almost

identical.

DM annihilation 
(smooth morphology,  

Poisson-distributed photon events)

Faint millisecond pulsar population 
(photon clustering on small scales, 
non-Poissonian noise component)
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Figure 2: Compilation of the spatial (upper panel) and spectral (lower panel) morphology of
all gamma-ray templates used in our baseline setup to model the gamma-ray emission in the
GC region. The upper panel’s first image displays the Fermi-LAT data in our ROI between
1 GeV and 2 GeV, which is the same energy bin chosen for the remaining templates. The
templates are the output of the Fermi Science Tools routine gtmodel and hence display the
expected events from the respective flux model for the given Fermi-LAT observation time
in the infinite statistics limit. The color indicates the base-10 logarithm of the number of
expected gamma-ray events per spatial pixel. The spectral properties of the DM and MSP
templates follow the best-fit results for Model 2A as stated in the text (c.f. Fig. 9, which fixes
� = 1.25 in Eq. 2.2. The adjacent MSP template is based on the same spatial profile whereas
the spectral parameters read �L = 0.76 and FMSP = 4.1 ⇥ 10�7 ph/cm2/s.

Millisecond pulsar template. To generate the MSP template together with the spatial
distribution (adopted as above) we need to specify the spectral shape and the luminosity
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Figure 2: Compilation of the spatial (upper panel) and spectral (lower panel) morphology of
all gamma-ray templates used in our baseline setup to model the gamma-ray emission in the
GC region. The upper panel’s first image displays the Fermi-LAT data in our ROI between
1 GeV and 2 GeV, which is the same energy bin chosen for the remaining templates. The
templates are the output of the Fermi Science Tools routine gtmodel and hence display the
expected events from the respective flux model for the given Fermi-LAT observation time
in the infinite statistics limit. The color indicates the base-10 logarithm of the number of
expected gamma-ray events per spatial pixel. The spectral properties of the DM and MSP
templates follow the best-fit results for Model 2A as stated in the text (c.f. Fig. 9, which fixes
� = 1.25 in Eq. 2.2. The adjacent MSP template is based on the same spatial profile whereas
the spectral parameters read �L = 0.76 and FMSP = 4.1 ⇥ 10�7 ph/cm2/s.

Millisecond pulsar template. To generate the MSP template together with the spatial
distribution (adopted as above) we need to specify the spectral shape and the luminosity

– 8 –

-15
-10
-5
0
5

10
15

G
al

ac
ti

c
L
at

it
ud

e
[�

]

Fermi -LAT data NCO,1 NCO,2 NCO,3

-15
-10
-5
0
5

10
15

G
al

ac
ti

c
L
at

it
ud

e
[�

]

NCO,4 NHI,1 NHI,2 NHI,3

-15
-10
-5
0
5

10
15

G
al

ac
ti

c
L
at

it
ud

e
[�

]

NHI,4 NPS,1 NPS,2

15 10 5 0 -5 -10-15
Galactic Longitude [�]

NIC

15 10 5 0 -5 -10-15
Galactic Longitude [�]

-15
-10
-5
0
5

10
15

G
al

ac
ti

c
L
at

it
ud

e
[�

]

NIGRB

15 10 5 0 -5 -10-15
Galactic Longitude [�]

NFB

15 10 5 0 -5 -10-15
Galactic Longitude [�]

NDM, gNFW � = 1.25

15 10 5 0 -5 -10-15
Galactic Longitude [�]

NMSP, gNFW � = 1.25

�2

�1

0

1

2

3

ph
ot

on
co

un
ts

lo
g 1

0
N

100 101 102

E [GeV]

101

102

103

104

105

106

ph
ot

on
co

un
ts

NCO,1

NCO,2

NCO,3

NCO,4

NHI,1

NHI,2

NHI,3

NHI,4

100 101 102

E [GeV]

NPS1

NPS2

NIC

NISO

NFB

NDM

NMSP

Figure 2: Compilation of the spatial (upper panel) and spectral (lower panel) morphology of
all gamma-ray templates used in our baseline setup to model the gamma-ray emission in the
GC region. The upper panel’s first image displays the Fermi-LAT data in our ROI between
1 GeV and 2 GeV, which is the same energy bin chosen for the remaining templates. The
templates are the output of the Fermi Science Tools routine gtmodel and hence display the
expected events from the respective flux model for the given Fermi-LAT observation time
in the infinite statistics limit. The color indicates the base-10 logarithm of the number of
expected gamma-ray events per spatial pixel. The spectral properties of the DM and MSP
templates follow the best-fit results for Model 2A as stated in the text (c.f. Fig. 9, which fixes
� = 1.25 in Eq. 2.2. The adjacent MSP template is based on the same spatial profile whereas
the spectral parameters read �L = 0.76 and FMSP = 4.1 ⇥ 10�7 ph/cm2/s.
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Figure 2: Compilation of the spatial (upper panel) and spectral (lower panel) morphology of
all gamma-ray templates used in our baseline setup to model the gamma-ray emission in the
GC region. The upper panel’s first image displays the Fermi-LAT data in our ROI between
1 GeV and 2 GeV, which is the same energy bin chosen for the remaining templates. The
templates are the output of the Fermi Science Tools routine gtmodel and hence display the
expected events from the respective flux model for the given Fermi-LAT observation time
in the infinite statistics limit. The color indicates the base-10 logarithm of the number of
expected gamma-ray events per spatial pixel. The spectral properties of the DM and MSP
templates follow the best-fit results for Model 2A as stated in the text (c.f. Fig. 9, which fixes
� = 1.25 in Eq. 2.2. The adjacent MSP template is based on the same spatial profile whereas
the spectral parameters read �L = 0.76 and FMSP = 4.1 ⇥ 10�7 ph/cm2/s.

Millisecond pulsar template. To generate the MSP template together with the spatial
distribution (adopted as above) we need to specify the spectral shape and the luminosity
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1 - 2 GeV  
energy band

• Traditional likelihood methods cannot explore this difference in any practical way (probabilistic 
nature of point source locations and fluxes!)


• Effective methods have been proposed: non-Poissonian template fitting, 1pPDF, wavelet 
analysis. These approaches seem to prefer an excess due to MSPs (e.g. [F. Calore et al., PRL 127 (2021) 16]; [M. 

Buschmann et al. PRD 102 (2020) 2]; [R. Bartels et al., PRL 116 (2016) 5]).

• Machine learning with convolutional networks could generalise over point source distribution 

as a generic feature and include uncertainties in astrophysical background modelling!
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Figure 2: Compilation of the spatial (upper panel) and spectral (lower panel) morphology of
all gamma-ray templates used in our baseline setup to model the gamma-ray emission in the
GC region. The upper panel’s first image displays the Fermi-LAT data in our ROI between
1 GeV and 2 GeV, which is the same energy bin chosen for the remaining templates. The
templates are the output of the Fermi Science Tools routine gtmodel and hence display the
expected events from the respective flux model for the given Fermi-LAT observation time
in the infinite statistics limit. The color indicates the base-10 logarithm of the number of
expected gamma-ray events per spatial pixel. The spectral properties of the DM and MSP
templates follow the best-fit results for Model 2A as stated in the text (c.f. Fig. 9, which fixes
� = 1.25 in Eq. 2.2. The adjacent MSP template is based on the same spatial profile whereas
the spectral parameters read �L = 0.76 and FMSP = 4.1 ⇥ 10�7 ph/cm2/s.
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all gamma-ray templates used in our baseline setup to model the gamma-ray emission in the
GC region. The upper panel’s first image displays the Fermi-LAT data in our ROI between
1 GeV and 2 GeV, which is the same energy bin chosen for the remaining templates. The
templates are the output of the Fermi Science Tools routine gtmodel and hence display the
expected events from the respective flux model for the given Fermi-LAT observation time
in the infinite statistics limit. The color indicates the base-10 logarithm of the number of
expected gamma-ray events per spatial pixel. The spectral properties of the DM and MSP
templates follow the best-fit results for Model 2A as stated in the text (c.f. Fig. 9, which fixes
� = 1.25 in Eq. 2.2. The adjacent MSP template is based on the same spatial profile whereas
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Machine learning techniques have already been applied to the GeV excess.

— pioneering: [S. Caron et al., JCAP 05 (2018) 058] —> The work presented here extends this pioneering study.

— more recent ones: [F. List et al. PRD 104 (2021) 12]; [S. Mishra-Sharma and K. Cranmer, PRD 105 (2022) 6]


—> Results point rather to an admixture of both components.
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Figure 2: Compilation of the spatial (upper panel) and spectral (lower panel) morphology of
all gamma-ray templates used in our baseline setup to model the gamma-ray emission in the
GC region. The upper panel’s first image displays the Fermi-LAT data in our ROI between
1 GeV and 2 GeV, which is the same energy bin chosen for the remaining templates. The
templates are the output of the Fermi Science Tools routine gtmodel and hence display the
expected events from the respective flux model for the given Fermi-LAT observation time
in the infinite statistics limit. The color indicates the base-10 logarithm of the number of
expected gamma-ray events per spatial pixel. The spectral properties of the DM and MSP
templates follow the best-fit results for Model 2A as stated in the text (c.f. Fig. 9, which fixes
� = 1.25 in Eq. 2.2. The adjacent MSP template is based on the same spatial profile whereas
the spectral parameters read �L = 0.76 and FMSP = 4.1 ⇥ 10�7 ph/cm2/s.

Millisecond pulsar template. To generate the MSP template together with the spatial
distribution (adopted as above) we need to specify the spectral shape and the luminosity

– 8 –

Our approach: 
Convolutional neural networks trained 
on images of the Galactic centre 
composed of background and signal 
templates to reconstruct the parameters 
of the GeV excess.

— 4 rings for diffuse background model (split 
     into HI and CO contribution)  
     + inverse-Compton (single)  
       [Fermi collab., ApJ. Suppl. 224 (2016) 1]; 
— all 4FGL-DR2 point sources within 20°x20° 
     region of interest (matches period selected 
     for real data) [Fermi collab., ApJ.Suppl. 247 (2020) 1];

— Fermi Bubbles [Fermi collab. ApJ 840 (2017) 1];

— isotropic component

— GCE: smooth DM component + individually 
     drawn MSPs both following a gNFW profile [1, 2] GeV  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Figure 1: Visualisation of domain adaptation. The background model to generate the GC
images is expanded in dimensionality to make more complex (and hopefully more accurate
models). Model 1 is embedded into Model 2, which is embedded in Model 3. Addition-
ally, there are two scenarios that are separate parameter spaces but follow the same domain
adaptation procedures. This results in six different background models. The output space
of all background models is always the same: a GC image with 5 energy bins. This output
is always the input of the neural networks that predict the input parameters of the models.
For every background model we trained a neural network. So there is a "Model 1, scenario
A network" which is trained on images generated from background Model 1, Scenario A, and
also for Model 2 and 3 and Scenario B. Additionally, it is possible to apply a network trained
on simulations from Model 1 on simulations from Model 2 for example. The arrows represent
all experiments we have done: the six straight arrows represent networks that are evaluated
and trained on the same background model. The curved dashed arrows represent experiments
where the neural network of a trained model is used to predict parameters from simulations
of a more complex model (so a network trained on Model 1 which is applied on Model 2, and
the same for Model 2 and 3). The elbow connected dashed lines represent experiments where
a neural network trained on Scenario A is applied on Scenario B and the other way around.

describe the data only due to a wrong or missing component in the simulations. ]132

In this work we systematically approach this problem with three different simulation-models,133

dubbed Models 1, 2 and 3, which have 17, 19 and 24 free parameters respectively. The main134

idea that we follow is to start with models with a minimal number of parameters and then135
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Reduce to 7 parameters, only 
one for astro diffuse emission 
(relative norm. of astro compo-
nents fixed by likelihood fit) 

compares to [S. Caron et al., JCAP 05 (2018) 058]

Initial 18 parameters
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Figure 5: [Gulli: Shouldn’t the second one be COlow?] Compilation of the additional
gamma-ray templates used in Models 2 and 3. The templates are the output of the Fermi
Science Tools routine gtmodel and hence display the [Gulli: number of] expected events from
the respective flux model for the given Fermi-LAT observation time in the infinite statistics
limit. The color indicates the decadic logarithm of the number of expected gamma-ray events
per spatial pixel. For definiteness, we have selected the second energy bin (1 GeV to 2 GeV)
for all shown templates.

Figure 6: The same as Fig. 3, but in the context of Model 2 (Scenario A).

two FBs templates and finds both templates present in the data, with comparable intensities.552

The results in terms of the] [Gulli: derived quantities for the GCE are consistent with the553

previous findings, indicating that our results are not strongly sensitive to the gas structure554
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+ spectral freedom —> 
  25 parameters 

Model setup to explore the impact of the background model complexity on the interpretation of the  
GCE with Bayesian convolutional neural networks used in a DeepEnsembles setup. We probe the

‘reality gap’ — the discrepancy between modelled and real data.

scenario A: discard all MSPs above the Fermi 
                   LAT detection threshold

scenario B: keep all MSPs
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Figure 6: The same as Fig. 4, but in the context of Model 2 (Scenario A).

5.2 Model 3

In our final model iteration, we enlarge our template selection (see Fig. 7) to address the
aforementioned issue with the central CO ring. To further alleviate the positive residuals at
high latitudes, we add a template quantifying the emission of the FBs because this component
is the least constrained and potentially one of the most degenerate with the DM template.
In particular,

• We split the innermost CO ring – whose emission shows significant left/right asymmetry
– in two independent templates. For this rather ad-hoc solution, we define a gamma-ray
flux threshold at 25% of the maximal value found in the input gamma-ray flux model
of the first CO ring. Each pixel above this threshold is part of a NCO,1,high template
whereas the remainder of pixels is cast into an independent template to which we assign
the already used label NCO,1.

• We add a second FBs template NFBcatenary, taken from [59]. This template is built
by extracting residual intensity maps from the LAT data, after the application of the
Fermi diffuse model. The edges of the bubbles’ residuals are found to be well reproduced
by two catenary curves (see [59] for parameter values), which also reproduce correctly

– 20 –

Gray band: 1(2) σ scatter of 
the mean prediction in the 
validation dataset 


Error bars: network predicted 
uncertainty for selected points  

Red point: results on real data 
Orange point: results of 
maximum likelihood fit


X/Y-axis: True/predicted value  
(means should fall on the diagonal
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Figure 6: The same as Fig. 4, but in the context of Model 2 (Scenario A).

5.2 Model 3

In our final model iteration, we enlarge our template selection (see Fig. 7) to address the
aforementioned issue with the central CO ring. To further alleviate the positive residuals at
high latitudes, we add a template quantifying the emission of the FBs because this component
is the least constrained and potentially one of the most degenerate with the DM template.
In particular,

• We split the innermost CO ring – whose emission shows significant left/right asymmetry
– in two independent templates. For this rather ad-hoc solution, we define a gamma-ray
flux threshold at 25% of the maximal value found in the input gamma-ray flux model
of the first CO ring. Each pixel above this threshold is part of a NCO,1,high template
whereas the remainder of pixels is cast into an independent template to which we assign
the already used label NCO,1.

• We add a second FBs template NFBcatenary, taken from [59]. This template is built
by extracting residual intensity maps from the LAT data, after the application of the
Fermi diffuse model. The edges of the bubbles’ residuals are found to be well reproduced
by two catenary curves (see [59] for parameter values), which also reproduce correctly
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Bright components 
predicted with high 
precision and consistent 
with the traditional 
likelihood analysis. 

inner gas rings

4FGL
FBs

IC
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Figure 6: The same as Fig. 4, but in the context of Model 2 (Scenario A).

5.2 Model 3

In our final model iteration, we enlarge our template selection (see Fig. 7) to address the
aforementioned issue with the central CO ring. To further alleviate the positive residuals at
high latitudes, we add a template quantifying the emission of the FBs because this component
is the least constrained and potentially one of the most degenerate with the DM template.
In particular,

• We split the innermost CO ring – whose emission shows significant left/right asymmetry
– in two independent templates. For this rather ad-hoc solution, we define a gamma-ray
flux threshold at 25% of the maximal value found in the input gamma-ray flux model
of the first CO ring. Each pixel above this threshold is part of a NCO,1,high template
whereas the remainder of pixels is cast into an independent template to which we assign
the already used label NCO,1.

• We add a second FBs template NFBcatenary, taken from [59]. This template is built
by extracting residual intensity maps from the LAT data, after the application of the
Fermi diffuse model. The edges of the bubbles’ residuals are found to be well reproduced
by two catenary curves (see [59] for parameter values), which also reproduce correctly
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Predictions broadly 
consistent among the models 
(also conventional astro 
components),  

BUT there seems to be a 
trend towards lower values of 
DM and high values of MSP 
normalisation when 
increasing  the complexity of 
the models.  
 
Reducing the number of 
reconstructed parameters to 
one (marginalising over the 
remaining ones) yields very 
high precision.

MSP fluxDM flux γ
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Figure 10: Top: Results of the network prediction on the real data in our three Models and
two Scenarios (circle: A; triangle: B) with respect to the parameters of the GCE. Bottom:
Comparison of the network’s prediction for fsrc per �EM and scenario. 3-1D shows the result
of networks trained only on one (fsrc) parameter (treating the rest as nuisance parameters)
when applied to Models 3.

procedure. As a consequence, the large-scale residual emission (including the (smoothed) GCE
and FBs) is part of the diffuse model itself, in stark difference from the IEM our network was
trained on. Despite these differences, the overall emission in the verification data set (that is
built by summing up our usual PS, ISO, FB, and GCE templates together with this IEM),
contains the emission components the network is expected to be broadly familiar with and
should be able to quantify. We note that the diffuse model gll_iem_v07.fits is not meant
to be used for the analysis of large-scale gamma-ray sources (like the GCE) in real Fermi-LAT
data9. However, this caveat is not relevant for the purpose of our robustness check since it is
solely based on Monte Carlo data.

9See https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/aux/4fgl/Galactic_Diffuse_
Emission_Model_for_the_4FGL_Catalog_Analysis.pdf for a list of caveats compiled by the Fermi-LAT
collaboration.
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Table 1: Summary of the parameters of Model 1 and their assumed ranges. These parameters
are sampled from the prior distributions stated in the last column of this table and combined
according to Eq. 2.5 to form a set of training data for our neural network approach. Note that
an additional constraint on the total number of counts is applied a posteriori to the templates
(see text for more details).

Parameter Minimum Maximum Prior
ADIFF 0.5 2.0 uniform
APS 0.9 1.1 uniform
ADM 10�3 4 log-uniform
� 0.8 1.3 uniform
FMSP 0.02 ⇥ 10�6 1.58 ⇥ 10�6 log-uniform
�L 0.3 1.2 uniform

“granular”) GCE. We, therefore, introduce an additional quantity, fsrc 2 [0, 1], on which we
also train the neural network. It helps characterize the composition of the emission associated
with the GCE. It is defined as the fraction of the GCE that is due to MSPs, i.e.

fsrc =
FMSP

FMSP + FDM
, (2.6)

where FDM is the integrated gamma-ray flux (0.1 GeV - 100GeV) associated with the DM
template for a given value of the normalization parameter ADM. The value of FDM hence
follows from integrating the differential gamma-ray flux formula for pair-annihilating (Majo-
rana) DM (see e.g. [94])
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with respect to the chosen energy range and ROI size. The ROI size is relevant for the first
term in parenthesis, the so-called J-factor, which is the line-of-sight integral of the squared
DM density distribution from a selected portion of the sky. The second term in parenthesis
is mostly fixed by our choice of DM mass and annihilation channel while h�viann follows
from the best-fit value of the normalization parameter ADM. Since fsrc is entirely computed
from a subset of the six �EM parameters, it does not contain additional information that the
network may use to improve its predictions. However, including fsrc in the training parameter
set has the advantage that the network is able to make an assessment of the uncertainty of
this quantity on its own without further human intervention in contrast to, for instance, error
propagation using the estimated uncertainties of the ingredients of Eq. 2.6.
The power of fsrc to distinguish between a DM-like and MSP-like GCE depends on the

number of MSPs just below the detection threshold, which is determined by �L. If the bulk
of the flux comes from very faint sources, the two templates become indistinguishable as,
for example, explored in the context of neural networks in [72]. As visualized in Fig. 4 our
choices for the MSP-related prior ranges are such that the generated populations cover the
latter extreme case as well as realization with enough sources near the Fermi-LAT detection
threshold. This is also visually demonstrated in Figure 2 which shows an example of an MSP
template using the network’s predicted parameters.
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There is only one gamma-ray sky…  
Machine learning (as any analysis) yields a result, but how to check if 
this particular result is robust? 

+ Such checks especially relevant when using a new (black box?) tool

A likely situation for studies of the Galactic centre:

training data real data

How far is a wolf from dogs in the world of the neural network?

Machine learning technique called: One-Class Deep Support Vector Data Description (Deep 
SVDD) — Anomaly detector 
—> Classifies images as simulation-like or not 
—> Relies on same network architecture as previous inference network except for the last layer: 
       vector of fixed length with identical scalar value in all components

TAUP 2023
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For Deep SVDD we stay in the framework of Model 3: 

— A network trained on Model 3 is then shown validation data from: 
    Model 3, the Fermi diffuse background model, real data and pure 
     Gaussian noise.

— It quantifies the difference (in latent space) between what it ‘knows’  
     (its universe derived from the simulated training data) and what is 
     shown to it. 
— It answers the question: Can this universe produce such an image?

FERMIAI

QUANTIFYING REALITY GAP
25

▸ Use One-Class Deep Support Vector Data Description (Deep SVDD) 

▸ Quantify  the difference in distribution  between our  models, the Pass8 
Fermi  diffuse model, real data and the noise. 

Figure 10: Model 3A.

We use DeepEnsemble Networks to perform a detailed gamma ray analysis of the crowded928

Galactic center region. By applying the algorithm on the verification data set we demonstrate929

that it is capable of recovering the background and the presence of the GCE. In particular:930

• bright components are detected robustly and consistently between our models, see Fig.931

15. They are also detected consistently with the prediction from the traditional likeli-932

hood method. [Gabi: SHALL WE ADD PREDICTION FROM THE LIKELIHOOD933

TO THIS PLOT?]934

• the networks robustly detect the presence of the GCE in all our models, with the935

properties (flux and spatial distribution) consistent with other works (see Fig. 8)936

• the nature of the GCE however, while well predicted within each model, does not appear937

to be robust when networks are applied outside of their domain. We study in detail938

the limitation of our networks to successfully generalize the GCE nature and conclude939

that the reality gap remains the final obstacle in addressing the nature of GCE in our940

framework.941

• Comment SVDD and the possibility to test the models/reality gap before hand942

• this result is noted in many of other approaches CITE, but our work provides the first943

detailed study of such limitation and attempts to quantify the relevance of the reality944

gap when analysing faint components (REFORMULATE)945

• SHALL WE PROVIDE ANY QUANTITATIVE ESTIMATES? SEE OLD summary946

below.947

While the spatial distribution parameter of the GCE (�), as well as the DM and MSP nor-948

malization are detected consistently among all models considered in this work (Fig, 8) , the949

network is incapable of robustly determining the origin of the excess, due to a large uncertainty950

on fSRC parameter.951
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DeepEnsemble Networks are capable of recovering the background and the presence of the  
GCE. We found that:

•  Bright components are detected robustly and consistently between our models. They are also 

detected consistently with the prediction from the traditional likelihood method. 


•  The networks robustly detect the presence of the GCE in all our models, with the properties 
 (flux and spatial distribution) consistent with other works. 


However, the picture is not as clear as we (and everyone else!) wished: 
•  The nature of the GCE however, while well predicted within each model, does not appear to be 

  robust when networks are applied outside of their domain. We can predict anything from 
  no DM to no MSPs by selecting a fitting background model. 

•  Mind the gap: - the fact that reality is not  
 part of  the (background) model has  been  
 a limiting factor of many (all?) current works. 
 What results can we trust at the moment? 

•  Deep SVDDs offer a possibility to test 
 severity of the reality gap. We are currently probing 
 state-of-the-art models of the GC in this way. 
 Stay tuned!

Figure 12: SVDD prediction of the distance in latent space between the encoded vector for
the test data (blue, Model 3A (left) and Model 3B (right)), the Fermi diffuse model (orange),
the real data (red line) )and an image of the same dimensions filled only with Gaussian noise
(green line). Note that the normalized distance in both inset figures is adjusted to better
reflect the proximity of the real data to the training data compared to the pure noise.

• Bright components are detected robustly and consistently between our models, see
Fig. 13. They are also detected consistently with the prediction from the traditional
likelihood method with comparable uncertainties, for most templates.

• The networks robustly detect the presence of the GCE in all our models, with the
properties (flux and spatial distribution) consistent with other works (see Fig. 9).

• The nature of the GCE however, while well predicted within each model, does not
appear to be robust when networks are applied outside of their training domain. We
study in detail the limitation of our networks to successfully generalize the GCE nature
and conclude that the reality gap remains the final obstacle in addressing the nature of
GCE in our framework.

• We further quantify the reality gap by adopting Deep SVDD architecture, which allows
us to compare the distance between the encoded vector for our models and the real
data.

• While this lack of robustness proved to be present in all other attempts to determine the
nature of GCE as evident by the large and sometimes contradicting body of scientific
articles on the nature of the GCE, our work provides the first detailed study of such
limitation. More generally, whenever NN application is strongly dependent on training
data based on theoretical or data-driven models, it is imperative to study and quantify
the reality gap before the results can be claimed robust.

In summary, this work represents an extensive, systematic study of the often disregarded
issue of the reality gap in models of the GC’s gamma-ray emission; an approach never at-
tempted in the literature. While our analysis employs NN as the means to infer the properties
of the GCE – as it allows us to efficiently examine a range of models and to account for various
levels of uncertainties – the implications of our work hold true in more generality irrespective

– 30 –

TAUP 2023

mailto:eckner@lapth.cnrs.fr


14

Backup slides



Neural network architecture and scope
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Network architecture: 
— Bayesian convolutional networks to determine the simulation parameters in an inference task   
    —> input: (5, 120, 120) images of the GC: 5 energy bins ([0.5, 1], [1, 2], [2, 7],[7, 20], >20 GeV)  
    —> predict every template parameter with uncertainty

— Deep ensemble networks to also predict uncertainties due to the network itself: What would 
     have happened if the network was initialised differently (initial parameters, ordering of images, etc.)? 
     —> mean and scatter evaluated per  
            network run and later combined 
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Figure 1: Visualisation of domain adaptation. The background model to generate the GC
images is expanded in dimensionality to make more complex (and hopefully more accurate
models). Model 1 is embedded into Model 2, which is embedded in Model 3. Addition-
ally, there are two scenarios that are separate parameter spaces but follow the same domain
adaptation procedures. This results in six different background models. The output space
of all background models is always the same: a GC image with 5 energy bins. This output
is always the input of the neural networks that predict the input parameters of the models.
For every background model we trained a neural network. So there is a "Model 1, scenario
A network" which is trained on images generated from background Model 1, Scenario A, and
also for Model 2 and 3 and Scenario B. Additionally, it is possible to apply a network trained
on simulations from Model 1 on simulations from Model 2 for example. The arrows represent
all experiments we have done: the six straight arrows represent networks that are evaluated
and trained on the same background model. The curved dashed arrows represent experiments
where the neural network of a trained model is used to predict parameters from simulations
of a more complex model (so a network trained on Model 1 which is applied on Model 2, and
the same for Model 2 and 3). The elbow connected dashed lines represent experiments where
a neural network trained on Scenario A is applied on Scenario B and the other way around.

describe the data only due to a wrong or missing component in the simulations. ]132

In this work we systematically approach this problem with three different simulation-models,133

dubbed Models 1, 2 and 3, which have 17, 19 and 24 free parameters respectively. The main134

idea that we follow is to start with models with a minimal number of parameters and then135

– 3 –

Additional uncertainties: 
— DM and MSP templates follow the 
     same spatial morphology. We are 
     only interested in the fractional 
     contribution of both components.

— The ‘reality gap’ — the 
     discrepancy between modelled and  
     real data — may dominate all 
     reconstruction uncertainties!

— Increase/decrease complexity of 
     the model and check if results 
     remain stable.
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Figure 11: Robustness check of the network trained on Model 3B data by applying a vali-
dation data set that contains the Fermi diffuse background model instead of the gas and IC
templates of Model 3’s set of diffuse components. The line and color style is adopted from
Fig. 4. We only show those parameters of Model 3B that are in common with the validation
data set contain the Fermi diffuse background model.

much larger prediction of distances (green line). Note that the plots are normalized in such
a way that the distance to the maximally different model is set to the value of 1.

7 Summary and Future Prospects

We use DeepEnsemble Networks to perform a detailed gamma-ray analysis of the complex
Galactic center region. By applying the algorithm on the verification data set we demonstrate
that it is capable of recovering components of background emission and the presence of the
GCE. In particular:
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Network trained on Model 3A 
verified on the Fermi diffuse 
model 

However, ISO and DM 
components are under 
predicted and 
(consequentially?) MSP 
template is over predicted

FB templates are over 
predicted as expected  

ILLUSTRATES THAT IN THE 
CASE THERE IS A ‘GAP’ 
BETWEEN THE TRAINING 
AND VERIFICATION DATA, 
RESULTS ARE UNRELIABLE!
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