Vienna, 29th August 2023

Investigating the gamma-ray burst from decaying MeV-scale axion-like particles produced in supernova explosions

based on: JCAP **07** (2023), 056 & 2306.16397 in collaboration with: F. Calore, C. Eckner, A. Goobar, M. C. D. Marsh and E. Müller

Pierluca Carenza OKC, Stockholm University

Pragmatic introduction to ALPs

ALPs are pseudoscalars predicted by GUTs and String Theory

ALP-photon vertex

$$\mathcal{L}_{\mathsf{a}\gamma} = -rac{\mathsf{g}_{\mathsf{a}\gamma}}{\mathsf{4}} \mathsf{a} \; \mathsf{F}_{\mu
u} ilde{\mathsf{F}}^{\mu
u} = \mathsf{g}_{\mathsf{a}\gamma} \mathsf{a} \; \mathsf{E} \cdot \mathsf{B} \quad \mathsf{g}_{\mathsf{a}\gamma} = \mathsf{C}_{\gamma} rac{lpha}{2\pi \mathsf{f}_{\mathsf{a}}}$$

Motivations to study ALPs

ALPs are a window on high-energy physics

This hot topic is a motivation for interdisciplinary searches

Core-Collapse Supernovae

For massive stars ($M>8\,M_\odot$) the nuclear fusion produces heavy elements in an onion structure and a degenerate iron core

Iron in the core cannot be burnt and the star starts to collapse

Orders of magnitude for SNe

The SN core is an extreme environment

ALP production channels

G. Lucente, PC et al., JCAP 12 (2020), 008

ALPs are coupled with photons and are produced by:

Primakoff conversion

Inverse Decay

SN ALP phenomenology: decay of heavy ALPs JCAP **01** (2011), 015, Phys. Rev. D **98** (2018) no.5, 055032, JCAP **03** (2023), 054

The case of SN 1987A

An 18 M_{\odot} type II SN in the Large Magellanic Cloud (51.4 kpc) on February 23, 1987

No γ -ray excess from SN 1987A

S. Hoof and L. Schulz, JCAP 03 (2023), 054

The GRS instrument found no γ -ray excess in coincidence with SN 1987A

Expected ALP-induced γ -ray signal

Energy and time-dependence of simulated spectra

Revisiting the SN decay bound

E. Müller, PC et al. JCAP 07 (2023), 056

The latest SN 1987A bound on decaying ALPs

Application to SN 2023ixf

An $\sim 11~M_{\odot}$ type II SN in M101 (6.85 Mpc) on May 18, 2023

A lot of interest in SN 2023ixf

The bright supernova SN 2023ixf in Messier 101: online observation – 26 May 2023.

BY GIANLUCA MASI - 05/22/2023

Supernova **SN 2023ixf** is one of the brightest and closest ones seen in the last decade. Join our live feed to see this cosmic firework and its stunning host galaxy **Messier 101** in real-time.

- C. D. Kilpatrick et al. "SN 2023ixf in Messier 101: A Variable Red Supergiant as the Progenitor Candidate to a Type II Supernova," Astrophys. J. Lett. 952 (2023) no.1, L23
- ▶ L. A. Sgro et al. "Photometry of Type II Supernova SN 2023ixf with a Worldwide Citizen Science Network," Res. Notes AAS 7 (2023), 141

What if ALPs from SN 2023ixf give rise to a γ -ray signal?

Fermi-LAT observation in direction of SN 2023ixf in the range [30 $\mathrm{MeV}, 300~\mathrm{GeV}]$

... it doesn't look to be the case :(

Fermi-LAT bound on heavy ALPs from SN 2023ixf

Conclusions

"Always the last place you look!"