THE SELF-CONFINEMENT OF ELECTRONS AND POSITRONS FROM DARK MATTER

based on MR+, JCAP08(2023)030, [arXiv:2305.01999]

Marco Regis

Gravitational evidences of dark matter

Solid evidence since 1970-'80s

Still under debate

Where to look for non-gravitational DM signal

Bright signal with bright background?

or

Dark systems?

Radiative emissions from DM

What is the **equilibrium distribution** (spatial profile and energy spectrum) of the **e**⁺-**e**⁻ injected by DM?

Confinement and radiative emission

Main idea of the work

The motion of charged cosmic-rays generates irregularities in the magnetic field

→ lower limit on magnetic turbulence from the e⁺-e⁻ injected by DM

→ SELF CONFINEMENT

Turbulence from dark matter

DIFFUSION EQUATION

$$\frac{\partial n}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 D \frac{\partial n}{\partial r} \right] - \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 v_A n \right] + \frac{2v_A}{r} \frac{\partial}{\partial E} \left[\frac{p}{3} \beta n \right] - \frac{\partial}{\partial E} \left[\dot{E} n \right] + q_{\rm CR}$$
 Spatial Advection Energy DM losses source

TURBULENCE EQUATION

$$\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left[D_{kk}(W) \frac{\partial W}{\partial k} \right] - \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_A W) + \Gamma_{\rm CR}(n) W$$
Turbulent cascade (diffusion in k)

Advection Source (resonant streaming instability)

Source of turbulence:
$$\Gamma_{\rm CR} = \frac{4\pi\,c\,v_A}{3\,k\,W(k)\,B_0^2/(8\pi)}\left[\beta(p)\,p^4\left|\frac{\partial f}{\partial r}\right|\right]_{p=p_{res}}$$

Electron distribution

Examples of solution of the diffusion equation

Spatial diffusion coefficient

$$D(r, p, t) = \frac{D_{\rm B}(p)4/\pi}{kW(r, k, t)}$$

with
$$D_{\mathrm{B}}(p)=r_{\mathrm{L}}(p)c\beta/3$$

The case of Draco dSph

GMRT
Telescope

650 MHz
(noise level
~10 µJy/beam)

looking for DM-induced synchrotron emission

$$j_{syn}(\nu, r) = \int dE P_{syn}(r, E, \nu) n_e(r, E)$$

DM bounds

- advection is negligible (unless assuming unrealistic $v_A > 10^3$ km/s)
- since $n_e \sim B^{-2}$ and $P_{synch} \sim B^2$, there is little dependence of the bounds on B

→ data driven bounds!

Conclusions

Electrons and positrons injected by DM can induce a non-negligible level of turbulence

- → minimum (unavoidable) confinement time in any DM structure
 - → robust bounds on WIMPs from synchrotron emission
- → being able to exploit the wealth of forthcoming radio data (LOFAR2.0, ASKAP, MeerKAT, SKAO, ...)

MR+, JCAP08(2023)030, [arXiv:2305.01999]

Backup

Examples of synchrotron emission at 650 MHz in a dSph

