

Commissioning and the first observation of ISAI, Investigating Solar Axion by Iron-57, experiment

Yoshiyuki Onuki

Yoshizumi Inoue, a Kenji Shimazoe, b Akimichi Taketa, c Toshihiro Fujii, d Takeshi Tsuru, d Tomonori Ikeda, d Masamune Matsuda, d Kazuho Kayama, d Hiromu Iwasaki, d Hiroki Namba, d Mei Anazawa, d Mizuki Uenomachi, e Kentaro Miuchi and f Ayaki Takeda

University of Tokyo, ICEPP,

^aUniversity of Tokyo, Department of Nuclear Engineering and Management,

^bUniversity of Tokyo, ERI,

^cOsaka Metropolitan University,

^dKyoto University,

^eKobe University,

^fMiyazaki University

Early 'Commissioning and the first'observation of ISAI, Investigating Solar Axion by Iron-57, experiment

Yoshiyuki Onuki

Yoshizumi Inoue, a Kenji Shimazoe, b Akimichi Taketa, c Toshihiro Fujii, d Takeshi Tsuru, d Tomonori Ikeda, d Masamune Matsuda, d Kazuho Kayama, d Hiromu Iwasaki, d Hiroki Namba, d Mei Anazawa, d Mizuki Uenomachi, e Kentaro Miuchi and f Ayaki Takeda

University of Tokyo, ICEPP,

^aUniversity of Tokyo, Department of Nuclear Engineering and Management,

^bUniversity of Tokyo, ERI,

^cOsaka Metropolitan University,

^dKyoto University,

^eKobe University,

^fMiyazaki University

Axion

- Strong CP problem in QCD
 - CP non-conserving term in QCD Lagrangian
 - EDM in neutron can be induced however the EDM highly suppressed.
- Peccei-Quinn mechanism solves the strong CP problem
 - Axion appears

$$m_a \simeq \left(\frac{6 \times 10^6}{f_a(\text{GeV})}\right)$$

- Invisible axion models
 - DFSZ axion...interacts with lepton and quark at tree level

Igor G. Irastorza et al., Progress in Particle and Nuclear, 102(2018)89-159

• KSVZ(hadronic) axion...interacts with nucleus, and both lepton and quark at loop level

axion-gamma interaction g_{av}

axion-electron g_{ae}

axion-nucleus g_{aN}

Low-reheating scenarios

Pierluca Carenza et al., JCAP07(2021)031

Luca Di Luzio et al, Physics Reports 870 (2020), 1-117

Solar axion via ⁵⁷Fe

⁵⁷Fe natural abundance 2.119% Mössbauer nuclei can absorb axion thanks to Doppler broadening.

 R_d : ⁵⁷Fe de-excitation rate

N: observed event

M: ⁵⁷Fe mass

 η : γ fraction without internal conversion 0.105

 ε : detection efficiency

Moriyama, Phys.Rev.Lett,75,3222

Independent g_{aN} measurement by 14.4 keV γ without introducing the other interactions.

Measurements and feasibility study

- m_a < 745 eV@95%C.L, Si(Li), 61days, M. Krcmar et al., Phys. Lett. B 442 (1998) 38.
- m_a < 216 eV@95%C.L, PIN photo diodes, 14days T. Namba, Phys.Lett.B 645, 398 (2007)
- m_a < 145 eV@95%C.L., Si(Li), 45days, A.V. Derbin et al., Phys.At.Nucl. 74, 596 (2011)

New experiment using X-ray SOI pixel sensor equipped with self-trigger and high energy resolution (XRPIX)

- G10 rigid circuit board XRPIX on G10 Radiation shield - Rigid-flex circuit board XRPIX on flex

Feasibility study w/ Geant4

Y. Onuki et al., NIM A, 924, 448-451 (2019)

²²⁸Ra from ²³²Th series could be crucial BG.

Rebooted as "ISAI" experiment since 2021 "Investigating Solar Axion by Iron-57" ISAI means conspicuous in Japanese

XRPIX: X-ray pixel sensor using SOI technology

- Originally developed(ing) for future X-ray astronomy mission
- Full depleted SOI process(0.2μm) by Lapis-semiconductor Co., Ltd.
- 24.6 mm \times 15.3 mm \times 300 μ m (608 \times 384 pixels, pix size 36 μ m square)
- Each pixel has a trigger circuit with a 10 μs timing resolution
 - Anti-coincidence enables to reduce cosmic-ray backgrounds
- High energy resolution: 590 eV (FWHM) @14.4 keV(Goal: 250 eV)

T.G. Tsuru et al., Proc. SPIE 10709,(2018)

Current latest chip is XRPIX10. XRPIX7 (double SOI) is adapted for ISAI experiment.

Rigid-flex circuit board

XRPIX

Rigid-flexible circuit board

ISAI detector configuration and the status

- Enriched ⁵⁷Fe foil sandwiched by two XRPIX7 sensors -> Signal module
- Standard Fe foil sandwiched by two XRPIX7 sensors -> BG module
- In climatic chamber, the detectors shielded by t5mm OFC and t50mm lead.

Flex cable

- Readout by SEABAS IEEE Trans. Nucl. Sci. 55(3) 1631 (2008).
- Temperature monitors
 - Climatic chamber
 - PT100 logger inside shield
- Calibration source through pin-hole
 - Collimated irradiation on the part of XRPIX
 - · Gain monitoring while observing.
- Position sensitive plastic scintillator VETO counter
 - Staggered triangular scinti. bars with SiPM.
- Time stamp IEEE Trans. Nucl. Sci. , 68(8), 1801(2021)
 - PETNET originally developed for PET application
 - 144 ch. Input with 62.5psec resolution

ISAI detector configuration and the status

- Enriched ⁵⁷Fe foil sandwiched by two XRPIX7 sensors -> Signal module
- Standard Fe foil sandwiched by two XRPIX7 sensors -> BG module ✓ but single XRPIX readout
- In climatic chamber, the detectors shielded by t5mm OFC and t50mm lead.

- Readout by SEABAS ✓ IEEE Trans. Nucl. Sci. 55(3) 1631 (2008).
- Temperature monitors
 - Climatic chamber

Ethernet

- PT100 logger inside shield
- Calibration source through pin-hole
 - Collimated irradiation on the part of XRPIX
 - · Gain monitoring while observing.
- Position sensitive plastic scintillator VETO counter
 - Staggered triangular scinti. bars with SiPM.
- Time stamp IEEE Trans. Nucl. Sci. , 68(8), 1801(2021)
 - PETNET originally developed for PET application
 - 144 ch. Input with 62.5psec resolution

Detection efficiency

- XRPIX7 has an issue in higher sensor bias under a low temperature.
 - Several chips were broken. Still the reason is not understood.
 - Should operate moderate Vbias ~-10V and temperature 0°C.

- Collimated ²⁴¹Am 13.9keV source flux measured by SDD using the efficiency in spec sheet.
 - XRPIX7 detection efficiency rough estimation ~2% at Vbias= -10V.

Need more study!

Calibration source through pin-hole.

BG enhanced run for demonstration of pin-hole calibration.

- Stable operation for 42 days(15 days livetime).
- Gain monitoring area under the pin-hole.
- Observing area except for the are under pin-hole.
- No veto.
- 2.8keV(FWHM)@13.9keV

Pin-hole calibration seems working!

ISAI BG module assembly and the BG run

BG module was assembled and shielded. First BG run conducted 2023/07/13-2023/08/10. But only one of two XRPIX7 chips was readout.

First BG run using ISAI BG detector and the sensitivity.

• BG module without veto.

- 2023/07/13-2023/08/10
- Livetime 10.07days

PC

~4.3 counts/day/2.8keV@14.4keV obtained

First BG run using ISAI BG detector and the sensitivity.

BG module without veto.

PC

- 2023/07/13-2023/08/10
- Livetime 10.07days

~4.3 counts/day/2.8keV@14.4keV obtained

- ←Assume 1/2 ISAI without veto.
- Assume 2% detection eff.

First BG run using ISAI BG detector and the sensitivity.

Prospect

- Learning ISAI detector
 - BG reduction achieved by rigid-flex
 - Veto and recovery of detection efficiency is crucial for the sensitivity
 - Veto commissioning starts soon.
 - 1/2 ISAI to full ISAI => improve twice efficiency.
 - First physics run soon after the veto commissioning.
- The latest XRPIX10 solves the back bias issue
 - It can apply bias -70V(i.e. -10V for XRPIX7) though the detection eff. not measured yet
 - Switching XRPIX7 to XRPIX10 somewhere after the intensive study using XRPIX7.

Summary

- ISAI is dedicated measurement of g_{aN} using the solar axion.
- The module, stacking std. Fe foil sandwiched by two XRPIXs, was assembled and conducted BG run without veto.
- XRPIX7 issue compels operation in moderate Vbias and temperature.
 - the latest XRPIX10 seems the issue solved.
- BG run w/ corresponding 1/2 ISAI detector without veto conducted.

 found necessity
 Full scale experiment
 Significant BG reduction by veto
 Recovery of detection efficiency
- Veto commissioning will start soon.

Backup

マスコットキャラ (ISAIさん)

太陽をイメージした髪型

鉛ブロックの本

太陽中心でできたFe-57 とアクシオンの髪飾り

三角シンチレーターの腕

XRPIXのベスト

XRPIXで挟んだFe-57と アクシオンのアクセサリー

フレキシブル基板のスカート

リジッド基板の裾

三角シンチレーターの脚